8,793 research outputs found
Covert Capacity of Non-Coherent Rayleigh-Fading Channels
The covert capacity is characterized for a non-coherent fast Rayleigh-fading
wireless channel, in which a legitimate user wishes to communicate reliably
with a legitimate receiver while escaping detection from a warden. It is shown
that the covert capacity is achieved with an amplitude-constrained input
distribution that consists of a finite number of mass points including one at
zero and numerically tractable bounds are provided. It is also conjectured that
distributions with two mass points in fixed locations are optimal
Anharmonic parametric excitation in optical lattices
We study both experimentally and theoretically the losses induced by
parametric excitation in far-off-resonance optical lattices. The atoms confined
in a 1D sinusoidal lattice present an excitation spectrum and dynamics
substantially different from those expected for a harmonic potential. We
develop a model based on the actual atomic Hamiltonian in the lattice and we
introduce semiempirically a broadening of the width of lattice energy bands
which can physically arise from inhomogeneities and fluctuations of the
lattice, and also from atomic collisions. The position and strength of the
parametric resonances and the evolution of the number of trapped atoms are
satisfactorily described by our model.Comment: 7 pages, 5 figure
High-precision measurement of the half-life of Ga
The beta-decay half-life of 62Ga has been studied with high precision using
on-line mass separated samples. The decay of 62Ga which is dominated by a 0+ to
0+ transition to the ground state of 62Zn yields a half-life of T_{1/2} =
116.19(4) ms. This result is more precise than any previous measurement by
about a factor of four or more. The present value is in agreement with older
literature values, but slightly disagrees with a recent measurement. We
determine an error weighted average value of all experimental half-lives of
116.18(4) ms.Comment: 9 pages, 5 figures, accepted for publication in PR
Q-Value for the Fermi Beta-Decay of 46V
By comparing the Q-values for the 46Ti(3He,t)46V and 47Ti(3He,t)47}V
reactions to the isobaric analog states the Q-value for the superallowed
Fermi-decay of 46V has been determined as Q_{EC}(46V)=(7052.11+/-0.27) keV. The
result is compatible with the values from two recent direct mass measurements
but is at variance with the previously most precise reaction Q-value. As
additional input quantity we have determined the neutron separation energy
S_n(47Ti)=(8880.51+/-0.25) keV
State-Insensitive Cooling and Trapping of Single Atoms in an Optical Cavity
Single Cesium atoms are cooled and trapped inside a small optical cavity by
way of a novel far-off-resonance dipole-force trap (FORT), with observed
lifetimes of 2 to 3 seconds. Trapped atoms are observed continuously via
transmission of a strongly coupled probe beam, with individual events lasting ~
1 s. The loss of successive atoms from the trap N = 3 -> 2 -> 1 -> 0 is thereby
monitored in real time. Trapping, cooling, and interactions with strong
coupling are enabled by the FORT potential, for which the center-of-mass motion
is only weakly dependent on the atom's internal state.Comment: 5 pages, 4 figures Revised version to appear in Phys. Rev. Let
Cooling atoms in an optical trap by selective parametric excitation
We demonstrate the possibility of energy-selective removal of cold atoms from
a tight optical trap by means of parametric excitation of the trap vibrational
modes. Taking advantage of the anharmonicity of the trap potential, we
selectively remove the most energetic trapped atoms or excite those at the
bottom of the trap by tuning the parametric modulation frequency. This process,
which had been previously identified as a possible source of heating, also
appears to be a robust way for forcing evaporative cooling in anharmonic traps.Comment: 5 pages, 5 figure
Magnetic field stabilization for high-accuracy mass measurements on exotic nuclides
The magnetic-field stability of a mass spectrometer plays a crucial role in
precision mass measurements. In the case of mass determination of short-lived
nuclides with a Penning trap, major causes of instabilities are temperature
fluctuations in the vicinity of the trap and pressure fluctuations in the
liquid helium cryostat of the superconducting magnet. Thus systems for the
temperature and pressure stabilization of the Penning trap mass spectrometer
ISOLTRAP at the ISOLDE facility at CERN have been installed. A reduction of the
fluctuations by at least one order of magnitude downto dT=+/-5mK and
dp=+/-50mtorr has been achieved, which corresponds to a relative frequency
change of 2.7x10^{-9} and 1.5x10^{-10}, respectively. With this stabilization
the frequency determination with the Penning trap only shows a linear temporal
drift over several hours on the 10 ppb level due to the finite resistance of
the superconducting magnet coils.Comment: 23 pages, 13 figure
Very long storage times and evaporative cooling of cesium atoms in a quasi-electrostatic dipole trap
We have trapped cesium atoms over many minutes in the focus of a CO-laser
beam employing an extremely simple laser system. Collisional properties of the
unpolarized atoms in their electronic ground state are investigated. Inelastic
binary collisions changing the hyperfine state lead to trap loss which is
quantitatively analyzed. Elastic collisions result in evaporative cooling of
the trapped gas from 25 K to 10 K over a time scale of about 150 s.Comment: 5 pages, 3 figure
Measurement of two-halo neutron transfer reaction p(Li,Li)t at 3 MeV
The p(\nuc{11}{Li},\nuc{9}{Li})t reaction has been studied for the first time
at an incident energy of 3 MeV delivered by the new ISAC-2 facility at
TRIUMF. An active target detector MAYA, build at GANIL, was used for the
measurement. The differential cross sectionshave been determined for
transitions to the \nuc{9}{Li} ground andthe first excited states in a wide
range of scattering angles. Multistep transfer calculations using different
\nuc{11}{Li} model wave functions, shows that wave functions with strong
correlations between the halo neutrons are the most successful in reproducing
the observation.Comment: 6 pages, 3 figures, submitted to Physical Review Letter
- …
