304 research outputs found
Synthesis and Biological Evaluation (in Vitro and in Vivo) of Cyclic RGD Peptidomimetic - Paclitaxel Conjugates Targeting Integrin alphaVbeta3
A small library of integrin ligand - Paclitaxel conjugates 10-13 was synthesized with the aim of using the tumor-homing cyclo[DKP-RGD] peptidomimetics for site-directed delivery of the cytotoxic drug. All the Paclitaxel-RGD constructs 10-13 inhibited biotinylated vitronectin binding to the purified alphaVbeta3 integrin receptor at low nanomolar concentration and showed in vitro cytotoxic activity against a panel of human tumor cell lines similar to that of Paclitaxel. Among the cell lines, the cisplatin-resistant IGROV-1/Pt1 cells expressed high levels of integrin alphaVbeta3, making them attractive to be tested in in vivo models. Cyclo[DKP-f3-RGD]-PTX 11 displayed sufficient stability in physiological solution and in both human and murine plasma to be a good candidate for in vivo testing. In tumor-targeting experiments against the IGROV-1/Pt1 human ovarian carcinoma xenotransplanted in nude mice, compound 11 exhibited a superior activity than Paclitaxel, despite the lower (ca. half) molar dosage used
Preferential Paths of Air-water Two-phase Flow in Porous Structures with Special Consideration of Channel Thickness Effects.
Accurate understanding and predicting the flow paths of immiscible two-phase flow in rocky porous structures are of critical importance for the evaluation of oil or gas recovery and prediction of rock slides caused by gas-liquid flow. A 2D phase field model was established for compressible air-water two-phase flow in heterogenous porous structures. The dynamic characteristics of air-water two-phase interface and preferential paths in porous structures were simulated. The factors affecting the path selection of two-phase flow in porous structures were analyzed. Transparent physical models of complex porous structures were prepared using 3D printing technology. Tracer dye was used to visually observe the flow characteristics and path selection in air-water two-phase displacement experiments. The experimental observations agree with the numerical results used to validate the accuracy of phase field model. The effects of channel thickness on the air-water two-phase flow behavior and paths in porous structures were also analyzed. The results indicate that thick channels can induce secondary air flow paths due to the increase in flow resistance; consequently, the flow distribution is different from that in narrow channels. This study provides a new reference for quantitatively analyzing multi-phase flow and predicting the preferential paths of immiscible fluids in porous structures
New insights into the classification and nomenclature of cortical GABAergic interneurons.
A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts' assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus
Cancellation of ventricular activity in endocavitary recordings during atrial fibrillation by Particle Swarm Optimization
The cancellation of ventricular activity (VA) from atrial electrogram (AEG) is commonly performed by template matching and subtraction (TMS): a running template, built by adaptive averaging of AEG segments in correspondence of QRS, is subtracted from AEG to uncover atrial activity (AA). In our approach, before subtraction, templates are modulated by a set of coefficients which are estimated by maximizing, via Multiple Particle Swarm Optimization (MPSO), a fitness function based on: 1) the energy of the estimated and measured AA; 2) the first derivative of the estimated and measured AA; 3) the similarity between the template and its modulated version. To validate the method, three datasets of 500 synthetic AEG were built. Each signal included background AA, localized AA and VA. We observed that TMS+MPSO provided better performances then TMS alone when the ratio of VA/AA amplitude is large (VA/AA 65 3), while the performances get closer when the ratio decreases
Neuromodulation of the feedforward dentate gyrus-CA3 microcircuit
The feedforward dentate gyrus-CA3 microcircuit in the hippocampus is thought to activate ensembles of CA3 pyramidal cells and interneurons to encode and retrieve episodic memories. The creation of these CA3 ensembles depends on neuromodulatory input and synaptic plasticity within this microcircuit. Here we review the mechanisms by which the neuromodulators aceylcholine, noradrenaline, dopamine, and serotonin reconfigure this microcircuit and thereby infer the net effect of these modulators on the processes of episodic memory encoding and retrieval
Cilia-associated respiratory (CAR) bacillus infection in adult red deer, chamois, and roe deer
Cilia-associated respiratory (CAR) bacillus is an unclassified bacterium that colonizes the ciliated epithelium of airways in laboratory rats, laboratory mice, and laboratory and conventionally reared rabbits, cattle, goats, and pigs. Data on the prevalence of CAR bacillus infection in wild animals are lacking. The present study demonstrated the occurrence of the organism in wild red deer (Cervus elaphus hippelaphus), chamois (Rupicapra rupicapra), and roe deer (Capreolus capreolus) from the Val Fontana in northern Italy. Prevalence ranged from 26% for red deer to 56% for chamois, with a statistically significant negative correlation between CAR bacilli infection and the presence of lymphoid follicles
Complement Activation Determines the Therapeutic Activity of Rituximab In Vivo
Rituximab is an anti-CD20 chimeric mAb effective for the treatment of B-NHL. It can lyse lymphoma cells in vitro through both C- and Ab-dependent cellular cytotoxicity. The mechanism of action of rituximab in vivo is however still unclear. We have set up a new in vivo model in nonimmunodeficient mice by stable transduction of the human CD20 cDNA in the murine lymphoma line EL4. Animals injected i.v. with the EL4-CD20+ lymphoma cells died within 30 days with evident liver, spleen, and bone marrow involvement, confirmed by immunohistochemistry and PCR analysis. A single injection of rituximab or the murine anti-CD20 Ab 1F5, given i.p. 1 day after the tumor, cured 100% of the animals. Indeed, at week 4 after tumor cell inoculation, CD20+ cells were undetectable in all organs analyzed in rituximab-treated animals, as determined by immunohistochemistry and PCR. Rituximab had no direct effect on tumor growth in vitro. Depletion of either NK cells or neutrophils or both in tumor-injected animals did not affect the therapeutic activity of the drug. Similarly, rituximab was able to eradicate tumor cells in athymic nude mice, suggesting that its activity is T cell independent. In contrast, the protective activity of rituximab or the 1F5 Ab was completely abolished in syngeneic knockout animals lacking C1q, the first component of the classical pathway of C (C1qa−/−). These data demonstrate that C activation is fundamental for rituximab therapeutic activity in vivo
Multiplex staining depicts the immune infiltrate in colitis-induced colon cancer model
Assessment of the host immune response pattern is of increasing importance as highly prognostic and diagnostic, in immune-related diseases and in some types of cancer. Chronic inflammation is a major hallmark in colon cancer formation, but, despite the extent of local inflammatory infiltrate has been demonstrated to be extremely informative, its evaluation is not routinely assessed due to the complexity and limitations of classical immunohistochemistry (IHC). In the last years, technological advance helped in bypassing technical limits, setting up multiplex IHC (mIHC) based on tyramide signal amplification (TSA) method and designing software suited to aid pathologists in cell scoring analysis. Several studies verified the efficacy of this method, but they were restricted to the analysis of human samples. In the era of translational medicine the use of animal models to depict human pathologies, in a more complete and complex approach, is really crucial. Nevertheless, the optimization and validation of this method to species other than human is still poor. We took advantage of Multispectral Imaging System to identify the immunoprofile of Dextran Sulphate Sodium (DSS)-treated mouse colon. We optimized a protocol to sequentially stain formalin fixed paraffin embedded murine colon samples for CD3, CD8a, CD4, and CD4R5B0 antigens. With this approach we obtained a detailed lymphocyte profile, while preserving the morphological tissue context, generally lost with techniques like gene expression profiling or flow cytometry. This study, comparing the results obtained by mIHC with immunophenotyping performed with cytofluorimetric and standard IHC methods validates the potentiality and the applicability of this innovative approach
Magnetic Resonance Imaging Visualization of Vulnerable Atherosclerotic Plaques at the Brachiocephalic Artery of Apolipoprotein E Knockout Mice by the Blood-pool Contrast Agent B22956/1
The aim of this study was to identify, by magnetic resonance imaging (MRI), the ability of the blood-pool contrast agent B22956/1 to detect atherosclerotic plaques developing at the brachiocephalic artery of apolipoprotein E knockout (apoE-KO) mice and to possibly identify vulnerable atherosclerotic lesions. After high-fat feeding for 8 or 12 weeks, MRIs of brachiocephalic arteries were acquired before and after B22956/1 administration; then vessels were removed and analyzed by histology. B22956/1 injection caused a rapid increase in plaque signal enhancement and plaque to muscle contrast values, which remained stable up to 70 minutes. A linear correlation between signal enhancement and macrophage content was found 10 minutes after B22956/1 injection ( p < .01). Signal enhancement and plaque to muscle contrast values correlated with macrophage content 40 minutes after contrast agent administration ( p < .01). Finally, 70 minutes after B22956/1 infusion, plaque to muscle contrast significantly correlated with the percentage of stenosis ( p < .005). B22956/1 administration to high fat-fed apoE-KO mice resulted in a rapid enhancement of atherosclerotic plaques and in a great ability to rapidly visualize vulnerable plaques, characterized by a high macrophage content. These results suggest that B22956/1 could represent an interesting tool for the identification of atherosclerotic plaques potentially leading to acute cardiovascular events
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
- …
