4,716 research outputs found

    A study of high frequency nonlinear combustion instability in baffled annular liquid propellant rocket motors

    Get PDF
    Computer program contains mathematical model which provides relationship between engine gas dynamics and combustion processes. Mathematically simulated explosions initiate gas disturbances. Design methods for damping disturbances can be studied to prevent future engine shutdown or destruction

    Doubly perturbed S3S_3 neutrinos and the s13s_{13} mixing parameter

    Full text link
    We further study a predictive model for the masses and mixing matrix of three Majorana neutrinos. At zeroth order the model yielded degenerate neutrinos and a generalized ``tribimaximal" mixing matrix. At first order the mass splitting was incorporated and the tribimaximal mixing matrix emerged with very small corrections but with a zero value for the parameter s13s_{13}. In the present paper a different, assumed weaker, perturbation is included which gives a non zero value for s13s_{13} and further corrections to other quantities. These corrections are worked out and their consequences discussed under the simplifying assumption that the conventional CP violation phase vanishes. It is shown that the existing measurements of the parameter s23s_{23} provide strong bounds on s13s_{13} in this model.Comment: 8 page

    An approach to permutation symmetry for the electroweak theory

    Get PDF
    The form of the leptonic mixing matrix emerging from experiment has, in the last few years, generated a lot of interest in the so-called tribimaximal type. This form may be naturally associated with the possibility of a discrete permutation symmetry (S3S_3) among the three generations. However, trying to implement this attractive symmetry has resulted in some problems and it seems to have fallen out of favor. We suggest an approach in which the S3S_3 holds to first approximation, somewhat in the manner of the old SU(3) flavor symmetry of the three flavor quark model. It is shown that in the case of the neutrino sector, a presently large experimentally allowed region can be fairly well described in this first approximation. We briefly discuss the nature of the perturbations which are the analogs of the Gell-Mann Okubo perturbations but confine our attention for the most part to the S3S_3 invariant model. We postulate that the S3S_3 invariant mass spectrum consists of non zero masses for the (τ,b,t)(\tau,b,t) and zero masses for the other charged fermions but approximately degenerate masses for the three neutrinos. The mixing matrices are assumed to be trivial for the charged fermions but of tribimaximal type for the neutrinos in the first approximation. It is shown that this can be implemented by allowing complex entries for the mass matrix and spontaneous breakdown of the S3S_3 invariance of the Lagrangian.Comment: 24 pages, 1 figure, minor corrections and acknowledgment added. To appear in IJM

    Understanding micro-image configurations in quasar microlensing

    Full text link
    The micro-arcsecond scale structure of the seemingly point-like images in lensed quasars, though unobservable, is nevertheless much studied theoretically, because it affects the observable (or macro) brightness, and through that provides clues to substructure in both source and lens. A curious feature is that, while an observable macro-image is made up of a very large number of micro-images, the macro flux is dominated by a few micro-images. Micro minima play a key role, and the well-known broad distribution of macro magnification can be decomposed into narrower distributions with 0,1,2,3,... micro minima. This paper shows how the dominant micro-images exist alongside the others, using the ideas of Fermat's principle and arrival-time surfaces, alongside simulations.Comment: Accepted for publication in MNRA

    Is Weak Pseudo-Hermiticity Weaker than Pseudo-Hermiticity?

    Full text link
    For a weakly pseudo-Hermitian linear operator, we give a spectral condition that ensures its pseudo-Hermiticity. This condition is always satisfied whenever the operator acts in a finite-dimensional Hilbert space. Hence weak pseudo-Hermiticity and pseudo-Hermiticity are equivalent in finite-dimensions. This equivalence extends to a much larger class of operators. Quantum systems whose Hamiltonian is selected from among these operators correspond to pseudo-Hermitian quantum systems possessing certain symmetries.Comment: published version, 10 page

    Magnetization of small lead particles

    Full text link
    The magnetization of an ensemble of isolated lead grains of sizes ranging from below 6 nm to 1000 nm is measured. A sharp disappearance of Meissner effect with lowering of the grain size is observed for the smaller grains. This is a direct observation by magnetization measurement of the occurrence of a critical particle size for superconductivity, which is consistent with Anderson's criterion.Comment: 7 pages, 5 figures, Submitted to PR

    The many levels pairing Hamiltonian for two pairs

    Full text link
    We address the problem of two pairs of fermions living on an arbitrary number of single particle levels of a potential well (mean field) and interacting through a pairing force. The associated solutions of the Richardson's equations are classified in terms of a number vlv_l, which reduces to the seniority vv in the limit of large values of the pairing strength GG and yields the number of pairs not developing a collective behaviour, their energy remaining finite in the GG\to\infty limit. We express analytically, through the moments of the single particle levels distribution, the collective mode energy and the two critical values Gcr+G_{\rm cr}^{+} and GcrG_{\rm cr}^{-} of the coupling which can exist on a single particle level with no pair degeneracy. Notably Gcr+G_{\rm cr}^{+} and GcrG_{\rm cr}^{-} merge when the number of single particle levels goes to infinity, where they coincide with the GcrG_{\rm cr} (when it exists) of a one pair system, not envisioned by the Richardson theory. In correspondence of GcrG_{\rm cr} the system undergoes a transition from a mean field to a pairing dominated regime. We finally explore the behaviour of the excitation energies, wave functions and pair transfer amplitudes finding out that the former, for G>GcrG>G_{\rm cr}^{-}, come close to the BCS predictions, whereas the latter display a divergence at GcrG_{\rm cr}, signaling the onset of a long range off-diagonal order in the system.Comment: 35 pages, 6 figures, 2 tables, to be published in EPJ

    A microlensing measurement of dark matter fractions in three lensing galaxies

    Full text link
    Direct measurements of dark matter distributions in galaxies are currently only possible through the use of gravitational lensing observations. Combinations of lens modelling and stellar velocity dispersion measurements provide the best constraints on dark matter distributions in individual galaxies, however they can be quite complex. In this paper, we use observations and simulations of gravitational microlensing to measure the smooth (dark) matter mass fraction at the position of lensed images in three lens galaxies: MG 0414+0534, SDSS J0924+0219 and Q2237+0305. The first two systems consist of early-type lens galaxies, and both display a flux ratio anomaly in their close image pair. Anomalies such as these suggest a high smooth matter percentage is likely, and indeed we prefer ~50 per cent smooth matter in MG 0414+0534, and ~80 per cent in SDSS J0924+0219 at the projected locations of the lensed images. Q2237+0305 differs somewhat in that its lensed images lie in the central kiloparsec of the barred spiral lens galaxy, where we expect stars to dominate the mass distribution. In this system, we find a smooth matter percentage that is consistent with zero.Comment: 7 pages, 4 figures. Accepted for publication in Ap
    corecore