1,415 research outputs found
FISH: A 3D parallel MHD code for astrophysical applications
FISH is a fast and simple ideal magneto-hydrodynamics code that scales to ~10
000 processes for a Cartesian computational domain of ~1000^3 cells. The
simplicity of FISH has been achieved by the rigorous application of the
operator splitting technique, while second order accuracy is maintained by the
symmetric ordering of the operators. Between directional sweeps, the
three-dimensional data is rotated in memory so that the sweep is always
performed in a cache-efficient way along the direction of contiguous memory.
Hence, the code only requires a one-dimensional description of the conservation
equations to be solved. This approach also enable an elegant novel
parallelisation of the code that is based on persistent communications with MPI
for cubic domain decomposition on machines with distributed memory. This scheme
is then combined with an additional OpenMP parallelisation of different sweeps
that can take advantage of clusters of shared memory. We document the detailed
implementation of a second order TVD advection scheme based on flux
reconstruction. The magnetic fields are evolved by a constrained transport
scheme. We show that the subtraction of a simple estimate of the hydrostatic
gradient from the total gradients can significantly reduce the dissipation of
the advection scheme in simulations of gravitationally bound hydrostatic
objects. Through its simplicity and efficiency, FISH is as well-suited for
hydrodynamics classes as for large-scale astrophysical simulations on
high-performance computer clusters. In preparation for the release of a public
version, we demonstrate the performance of FISH in a suite of astrophysically
orientated test cases.Comment: 27 pages, 11 figure
Can skills assessment on a virtual reality trainer predict a surgical trainee's talent in laparoscopic surgery?
Background: A number of studies have investigated several aspects of feasibility and validity of performance assessments with virtual reality surgical simulators. However, the validity of performance assessments is limited by the reliability of such measurements, and some issues of reliability still need to be addressed. This study aimed to evaluate the hypothesis that test subjects show logarithmic performance curves on repetitive trials for a component task of laparoscopic cholecystectomy on a virtual reality simulator, and that interindividual differences in performance after considerable training are significant. According to kinesiologic theory, logarithmic performance curves are expected and an individual's learning capacity for a specific task can be extrapolated, allowing quantification of a person's innate ability to develop task-specific skills. Methods: In this study, 20 medical students at the University of Basel Medical School performed five trials of a standardized task on the LS 500 virtual reality simulator for laparoscopic surgery. Task completion time, number of errors, economy of instrument movements, and maximum speed of instrument movements were measured. Results: The hypothesis was confirmed by the fact that the performance curves for some of the simulator measurements were very close to logarithmic curves, and there were significant interindividual differences in performance at the end of the repetitive trials. Conclusions: Assessment of perceptual motor skills and the innate ability of an individual with no prior experience in laparoscopic surgery to develop such skills using the LS 500 VR surgical simulator is feasible and reliabl
Schnittstelle Notaufnahme: Interdisziplinäre Perspektiven
Zusammenfassung: Die Notaufnahme des Basler Universitätsspitals wird interdisziplinär als "Notfallstation" geführt. Das dort praktizierte "Basler Modell" wird schlaglichtartig beleuchtet. Ethische Fragestellungen, insbesondere die Frage nach dem Sistieren einer Behandlung, sollten frühzeitig und interdisziplinär besprochen werden. Da das Ziel der Versorgung in der präklinischen Phase zumeist der möglichst rasche Transport in ein geeignetes Zielkrankenhaus ist, bietet sich oft erst im Reanimationsraum der Notfallstation erstmals die Chance, diese Fragen überhaupt auszusprechen. Hier können entscheidungsrelevante Zusatzinformationen berücksichtigt werden wie etwa der mutmaßliche Wille des Patienten, aber auch die Prognose. Die unterschiedlichen Standards der präklinischen und der klinischen Phase können an der Schnittstelle Notfallstation zu Konflikten führen. Hier ist die Kommunikation des Teamleaders mit dem Rettungsteam, aber auch mit den Kollegen der anderen Disziplinen von entscheidender Bedeutun
Copper flows in buildings, infrastructure and mobiles: a dynamic model and its application to Switzerland
During the last century, the consumption of materials for human needs increased by several orders of magnitude, even for non-renewable materials such as metals. Some data on annual consumption (input) and recycling/waste (output) can often be found in the federal statistics, but a clear picture of the main flows is missing. A dynamic material flow model is developed for the example of copper in Switzerland in order to simulate the relevant copper flows and stocks over the last 150years. The model is calibrated using data from statistical and published sources as well as from interviews and measurements. A simulation of the current state (2000) is compared with data from other studies. The results show that Swiss consumption and losses are both high, at a level of about 8 and 2kg/(capyear), respectively, or about three times higher than the world average. The model gives an understanding of the flows and stocks and their interdependencies as a function of time. This is crucial for materials whose consumption dynamics are characterised by long lifetimes and hence for relating the current output to the input of the whole past. The model allows a comprehensive discussion of possible measures to reduce resource use and losses to the environment. While increasing the recycling reduces losses to landfill, only copper substitution can reduce the different losses to the environment, although with a time delay of the order of a lifetim
Magnetic Resonance Imaging zur Erfassung von Blutflussprofilen in Gefässen des menschlichen Körpers
Directed Fixed Energy Sandpile Model
We numerically study the directed version of the fixed energy sandpile. On a
closed square lattice, the dynamical evolution of a fixed density of sand
grains is studied. The activity of the system shows a continuous phase
transition around a critical density. While the deterministic version has the
set of nontrivial exponents, the stochastic model is characterized by mean
field like exponents.Comment: 5 pages, 6 figures, to be published in Phys. Rev.
Evolutionary Trends in the Physciaceae
The current delimitation of the family Physciaceae has been generally accepted since detailed descriptions of ascus characters allowed for a more natural circumscription of lichenized ascomycetes. The generic relations within the family are, however, still controversial and depend on the importance different authors attribute to specific morphological or chemical characteristics. The aim of this paper is to describe ascospore ontogeny and to test the present taxonomic structure of the family against a parsimony-based cladistic analysis, which includes three different scenarios of a priori character weighting. A study of ascospore ontogeny revealed two distinct developmental lines. One line revealed a delayed septum formation, which clearly showed transitions from spores with apical and median thickenings to spores without apical, but still well developed median thickenings, and to spores without any thickenings. In the second developmental line with an early septum formation again taxa with no thickenings, median thickenings, and both median and apical thickenings were found. Although these characters were constant at a species level, median wall thickenings especially varied among otherwise closely related taxa. In the cladistic analyses the current taxonomic structure of the Physciaceae was only obtained after the five character groups, namely morphology and anatomy of the vegetative thallus, conidiomata and conidia, morphology and anatomy of the apothecia, ontogeny of the ascospores, and secondary metabolites of the thallus, were given equal importance, and after a subjective a priori weighting further increased the weight of the three characters ‘conidial shape', ‘presence of apical thickenings', and ‘spore septation delayed'. This structure was not supported by a cladistic analysis with equally weighted characters but reflected the biased character weighting of the present day Physdaceae taxonomy. The taxonomic importance of conidial characters and of anatomical and ontogenetical spore characteristics need, therefore, a careful reconsideration in futur
Convergent Chaos
Chaos is widely understood as being a consequence of sensitive dependence upon initial conditions. This is the result of an instability in phase space, which separates trajectories exponentially. Here, we demonstrate that this criterion should be refined. Despite their overall intrinsic instability, trajectories may be very strongly convergent in phase space over extremely long periods, as revealed by our investigation of a simple chaotic system (a realistic model for small bodies in a turbulent flow). We establish that this strong convergence is a multi-facetted phenomenon, in which the clustering is intense, widespread and balanced by lacunarity of other regions. Power laws, indicative of scale-free features, characterize the distribution of particles in the system. We use large-deviation and extreme-value statistics to explain the effect. Our results show that the interpretation of the 'butterfly effect' needs to be carefully qualified. We argue that the combination of mixing and clustering processes makes our specific model relevant to understanding the evolution of simple organisms. Lastly, this notion of convergent chaos, which implies the existence of conditions for which uncertainties are unexpectedly small, may also be relevant to the valuation of insurance and futures contracts
- …
