165 research outputs found
The Functional DRD3 Ser9Gly Polymorphism (rs6280) Is Pleiotropic, Affecting Reward as Well as Movement
Abnormalities of motivation and behavior in the context of reward are a fundamental component of addiction and mood disorders. Here we test the effect of a functional missense mutation in the dopamine 3 receptor (DRD3) gene (ser9gly, rs6280) on reward-associated dopamine (DA) release in the striatum. Twenty-six healthy controls (HCs) and 10 unmedicated subjects with major depressive disorder (MDD) completed two positron emission tomography (PET) scans with [11C]raclopride using the bolus plus constant infusion method. On one occasion subjects completed a sensorimotor task (control condition) and on another occasion subjects completed a gambling task (reward condition). A linear regression analysis controlling for age, sex, diagnosis, and self-reported anhedonia indicated that during receipt of unpredictable monetary reward the glycine allele was associated with a greater reduction in D2/3 receptor binding (i.e., increased reward-related DA release) in the middle (anterior) caudate (p<0.01) and the ventral striatum (p<0.05). The possible functional effect of the ser9gly polymorphism on DA release is consistent with previous work demonstrating that the glycine allele yields D3 autoreceptors that have a higher affinity for DA and display more robust intracellular signaling. Preclinical evidence indicates that chronic stress and aversive stimulation induce activation of the DA system, raising the possibility that the glycine allele, by virtue of its facilitatory effect on striatal DA release, increases susceptibility to hyperdopaminergic responses that have previously been associated with stress, addiction, and psychosis
Multi-basin depositional framework for moisture-balance reconstruction during the last 1300 years at Lake Bogoria, central Kenya Rift Valley
Multi-proxy analysis of sediment cores from five key locations in hypersaline, alkaline Lake Bogoria (central Kenya Rift Valley) has allowed reconstruction of its history of depositional and hydrological change during the past 1300years. Analyses including organic matter and carbonate content, granulometry, mineralogical composition, charcoal counting and high-resolution scanning of magnetic susceptibility and elemental geochemistry resulted in a detailed sedimentological and compositional characterization of lacustrine deposits in the three lake basins and on the two sills separating them. Thesepalaeolimnological data were supplemented with information on present-day sedimentation conditions based on seasonal sampling of settling particles and on measurement of physicochemical profiles through the water column. A new age model based on Pb-210, Cs-137 and C-14 dating captures the sediment chronology of this hydrochemically complex and geothermally fed lake. An extensive set of chronological tie points between the equivalent high-resolution proxy time series of the five sediment sequences allowed transfer of radiometric dates between the basins, enabling interbasin comparison of sedimentation dynamics through time. The resulting reconstruction demonstrates considerable moisture-balance variability through time, reflecting regional hydroclimate dynamics over the past 1300years. Between ca 690 and 950AD, the central and southern basins of Lake Bogoria were reduced to shallow and separated brine pools. In the former, occasional near-complete desiccation triggered massive trona precipitation. Between ca 950 and 1100AD, slightly higher water levels allowed the build-up of high pCO(2) leading to precipitation of nahcolite still under strongly evaporative conditions. Lake Bogoria experienced a pronounced highstand between ca 1100 and 1350AD, only to recede again afterwards. For a substantial part of the time between ca 1350 and 1800AD, the northern basin was probably disconnected from the united central and southern basins. Throughout the last two centuries, lake level has been relatively high compared to the rest of the past millennium. Evidence for increased terrestrial sediment supply in recent decades, due to anthropogenic soil erosion in the wider Bogoria catchment, is a reason for concern about possible adverse impacts on the unique ecosystem of Lake Bogoria
Prediction of Depression in Individuals at High Familial Risk of Mood Disorders Using Functional Magnetic Resonance Imaging
Objective Bipolar disorder is a highly heritable condition. First-degree relatives of affected individuals have a more than a ten-fold increased risk of developing bipolar disorder (BD), and a three-fold risk of developing major depressive disorder (MDD) than the general population. It is unclear however whether differences in brain activation reported in BD and MDD are present before the onset of illness. Methods We studied 98 young unaffected individuals at high familial risk of BD and 58 healthy controls using functional Magnetic Resonance Imaging (fMRI) scans and a task involving executive and language processing. Twenty of the high-risk subjects subsequently developed MDD after the baseline fMRI scan. Results At baseline the high-risk subjects who later developed MDD demonstrated relatively increased activation in the insula cortex, compared to controls and high risk subjects who remained well. In the healthy controls and high-risk group who remained well, this region demonstrated reduced engagement with increasing task difficulty. The high risk subjects who subsequently developed MDD did not demonstrate this normal disengagement. Activation in this region correlated positively with measures of cyclothymia and neuroticism at baseline, but not with measures of depression. Conclusions These results suggest that increased activation of the insula can differentiate individuals at high-risk of bipolar disorder who later develop MDD from healthy controls and those at familial risk who remain well. These findings offer the potential of future risk stratification in individuals at risk of mood disorder for familial reasons
The personalized advantage index: Translating research on prediction into individualized treatment recommendations. A demonstration
Background: Advances in personalized medicine require the identification of variables that predict differential response to treatments as well as the development and refinement of methods to transform predictive information into actionable recommendations. Objective: To illustrate and test a new method for integrating predictive information to aid in treatment selection, using data from a randomized treatment comparison. Method: Data from a trial of antidepressant medications (N = 104) versus cognitive behavioral therapy (N = 50) for Major Depressive Disorder were used to produce predictions of post-treatment scores on the Hamilton Rating Scale for Depression (HRSD) in each of the two treatments for each of the 154 patients. The patient's own data were not used in the models that yielded these predictions. Five pre-randomization variables that predicted differential response (marital status, employment status, life events, comorbid personality disorder, and prior medication trials) were included in regression models, permitting the calculation of each patient's Personalized Advantage Index (PAI), in HRSD units. Results: For 60% of the sample a clinically meaningful advantage (PAI≥3) was predicted for one of the treatments, relative to the other. When these patients were divided into those randomly assigned to their "Optimal" treatment versus those assigned to their "Non-optimal" treatment, outcomes in the former group were superior (d = 0.58, 95% CI .17-1.01). Conclusions: This approach to treatment selection, implemented in the context of two equally effective treatments, yielded effects that, if obtained prospectively, would rival those routinely observed in comparisons of active versus control treatments. © 2014 DeRubeis et al
DISC1 genetics, biology and psychiatric illness
Psychiatric disorders are highly heritable, and in many individuals likely arise from the combined effects of genes and the environment. A substantial body of evidence points towards DISC1 being one of the genes that influence risk of schizophrenia, bipolar disorder and depression, and functional studies of DISC1 consequently have the potential to reveal much about the pathways that lead to major mental illness. Here, we review the evidence that DISC1 influences disease risk through effects upon multiple critical pathways in the developing and adult brain
A genome-wide association study of anorexia nervosa.
Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10(-7)) in SOX2OT and rs17030795 (P=5.84 × 10(-6)) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10(-)(6)) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10(-)(6)) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10(-6)), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field
Recommended from our members
A genome-wide association study of anorexia nervosa
Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2,907 cases with AN from 14 countries (15 sites) and 14,860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery datasets. Seventy-six (72 independent) SNPs were taken forward for in silico (two datasets) or de novo (13 datasets) replication genotyping in 2,677 independent AN cases and 8,629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication datasets comprised 5,551 AN cases and 21,080 controls. AN subtype analyses (1,606 AN restricting; 1,445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01×10−7) in SOX2OT and rs17030795 (P=5.84×10−6) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76×10−6) between CUL3 and FAM124B and rs1886797 (P=8.05×10−6) near SPATA13. Comparing discovery to replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P= 4×10−6), strongly suggesting that true findings exist but that our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field
Risk Attitude, Beliefs, and Information in a Corruption Game - An Experimental Analysis
The role of FKBP5 in cancer aetiology and chemoresistance
FK506 binding protein 51 (FKBP51, also called FKBP5) belongs to a family of immunophilins, FK506 binding proteins (FKBPs). Members of this family are targets for drugs such as rapamycin and cyclosporine. Although FKBP5 shares characteristics with other FKBPs, it also has unique features, especially its role in the regulation of multiple signalling pathways and in tumourigenesis and chemoresistance. In this review, we will focus on the recently discovered role of FKBP5 in cancer aetiology and response to antineoplastic therapy
Decreased lung hyaluronan in a model of ARDS in the rat: Effect of an inhibitor of leukocyte elastase
- …
