10,873 research outputs found

    Modelling Hybrid Stars in Quark-Hadron Approaches

    Full text link
    The density in the core of neutron stars can reach values of about 5 to 10 times nuclear matter saturation density. It is, therefore, a natural assumption that hadrons may have dissolved into quarks under such conditions, forming a hybrid star. This star will have an outer region of hadronic matter and a core of quark matter or even a mixed state of hadrons and quarks. In order to investigate such phases, we discuss different model approaches that can be used in the study of compact stars as well as being applicable to a wider range of temperatures and densities. One major model ingredient, the role of quark interactions in the stability of massive hybrid stars is discussed. In this context, possible conflicts with lattice QCD simulations are investigated.Comment: Contribution to the EPJA Topical Issue on "Exotic Matter in Neutron Stars

    Research project Mauretania: Satellites as development aids

    Get PDF
    A general discussion is presented of how satellite images and ground surveys are used to define land use. Specifically it deals with the Tagant region in Mauretania, West Africa

    Constraining the size of the narrow line region in distant quasars

    Full text link
    We propose a proper method to measure the size of the narrow line region (NLR) in distant quasars. The apparent angular size of the NLR is, in general, too small to resolve technically. However, it is possible to map the NLR if with gravitational lensing. In our method, we directly compare the observed image of the NLR with the expected lensed images of the NLR for various source sizes and lens models. Seeking the best fit image via the comparison procedures, we can obtain the best-fit size and the best-fit lens model. We apply this method to the two-dimensional spectroscopic data of a famous lensed quasar, Q2237+0305. If the lens galaxy resembles the applied lens model, an upper limit to the NLR size can be set 750 pc. Further, we examine how the fitting results will be improved by future observations, taking into account the realistic observational effects, such as seeing. Future observations will provide us more stringent constraints on the size of the NLR and on the density profile of the lens galaxy.Comment: 17 pages including 4 figures, accepted to Ap

    Many-body forces in magnetic neutron stars

    Full text link
    In this work, we study in detail the effects of many-body forces on the equation of state and the structure of magnetic neutron stars. The stellar matter is described within a relativistic mean field formalism that takes into account many-body forces by means of a non-linear meson field dependence on the nuclear interaction coupling constants. We assume that matter is at zero temperature, charge neutral, in beta-equilibrium, and populated by the baryon octet, electrons, and muons. In order to study the effects of different degrees of stiffness in the equation of state, we explore the parameter space of the model, which reproduces nuclear matter properties at saturation, as well as massive neutron stars. Magnetic field effects are introduced both in the equation of state and in the macroscopic structure of stars by the self-consistent solution of the Einstein-Maxwell equations. In addition, effects of poloidal magnetic fields on the global properties of stars, as well as density and magnetic field profiles are investigated. We find that not only different macroscopic magnetic field distributions, but also different parameterizations of the model for a fixed magnetic field distribution impact the gravitational mass, deformation and internal density profiles of stars. Finally, we also show that strong magnetic fields affect significantly the particle populations of starsComment: accepted by The Astrophysical Journa

    Deconfinement to Quark Matter in Neutron Stars - The Influence of Strong Magnetic Fields

    Full text link
    We use an extended version of the hadronic SU(3) non-linear realization of the sigma model that also includes quarks to study hybrid stars. Within this approach, the degrees of freedom change naturally as the temperature/density increases. Different prescriptions of charge neutrality, local and global, are tested and the influence of strong magnetic fields and the anomalous magnetic moment on the particle population is discussed.Comment: To appear in the proceedings of conference XII HADRON PHYSICS April, 22-27, 2012, Bento Goncalves, Wineyards Valley Region, Rio Grande do Sul, Brazil Revised version with corrections made to the text in page
    corecore