146 research outputs found

    Quenched Chiral Artifacts for Wilson-Dirac Fermions

    Get PDF
    We examine artifacts associated with the chiral symmetry breaking induced through the use of Wilson-Dirac fermions in lattice Monte Carlo computations. For light quark masses, the conventional quenched theory can not be defined using direct Monte Carlo methods due to the existence of nonintegrable poles in physical quantities. These poles are associated with the real eigenvalue spectrum of the Wilson-Dirac operator. We show how this singularity structure can be observed in the analysis of both QED in two dimensions and QCD in four dimensions.Comment: 32 pages (Latex) including 13 figures (EPS

    Quenched QCD with domain-wall fermions on coarse lattices

    Get PDF
    We investigate the existence of chiral zero modes at a^{-1} \simeq 1 GeV in quenched domain-wall QCD. Simulations are carried out for the plaquette and an RG-improved gauge actions on a 12^3x24xN_s lattice with N_s=10-50. We find that the pion mass in the chiral limit remains non-vanishing as N_s\to\infty for both gauge actions. Possible origins of this non-vanishing pion mass are discussed.Comment: LATTICE99(chiral fermions), 3 pages, 6 ps figures, LaTex, espcrc2.st

    On the low fermionic eigenmode dominance in QCD on the lattice

    Get PDF
    We demonstrate the utility of a spectral approximation to fermion loop operators using low-lying eigenmodes of the hermitian Dirac-Wilson matrix, Q. The investigation is based on a total of 400 full QCD vacuum configurations, with two degenerate flavors of dynamical Wilson fermions at beta =5.6, at two different sea quark masses. The spectral approach is highly competitive for accessing both topological charge and disconnected diagrams, on large lattices and small quark masses. We propose suitable partial summation techniques that provide sufficient saturation for estimating Tr Q^{-1}, which is related to the topological charge. In the effective mass plot of the eta' meson we achieved a consistent early plateau formation, by ground state projecting the connected piece of its propagator.Comment: 15 pages, 25 figures, citations adde

    Effect of Mono and Di-rhamnolipids on Biofilms Pre-formed by Bacillus subtilis BBK006.

    Get PDF
    Different microbial inhibition strategies based on the planktonic bacterial physiology have been known to have limited efficacy on the growth of biofilms communities. This problem can be exacerbated by the emergence of increasingly resistant clinical strains. Biosurfactants have merited renewed interest in both clinical and hygienic sectors due to their potential to disperse microbial biofilms. In this work, we explore the aspects of Bacillus subtilis BBK006 biofilms and examine the contribution of biologically derived surface-active agents (rhamnolipids) to the disruption or inhibition of microbial biofilms produced by Bacillus subtilis BBK006. The ability of mono-rhamnolipids (Rha-C10-C10) produced by Pseudomonas aeruginosa ATCC 9027 and the di-rhamnolipids (Rha-Rha-C14-C14) produced by Burkholderia thailandensis E264, and phosphate-buffered saline to disrupt biofilm of Bacillus subtilis BBK006 was evaluated. The biofilm produced by Bacillus subtilis BBK006 was more sensitive to the di-rhamnolipids (0.4 g/L) produced by Burkholderia thailandensis than the mono-rhamnolipids (0.4 g/L) produced by Pseudomonas aeruginosa ATCC 9027. Rhamnolipids are biologically produced compounds safe for human use. This makes them ideal candidates for use in new generations of bacterial dispersal agents and useful for use as adjuvants for existing microbial suppression or eradication strategies

    Nanoscale Simulations of Bauschinger Effects on a Nickel Nanowire

    No full text
    In this paper, the Bauschinger effect on a nickel nanowire is studied implementing molecular dynamics simulations in nanoscale. The inter-atomic interactions are represented by employing embedded-atom potential. Initially, the stress–strain curves for tensile and compressive loading are simulated by applying suitable periodic boundary conditions on an infinitely long nanowire. The generated results demonstrate that the yield strength in compression is lower than the tensile yield strength. At the second stage, the tension-followed-by-compression process is applied to the specimen at a predetermined strain rate. It is observed that the resulted yield strength in the reloading or reverse loading is substantially lower than the compressive yield stress in the original direction, a phenomena known as the Bauschinger effect. The reverse loading process is then performed at different strain levels after yield to study the Bauschinger effect variations. To clarify the Bauschinger effects on Ni nanowire, the introduced Bauschinger stress parameter (BP) is employed in the analysis

    An analytical study on the nonlinear forced vibration of functionally graded carbon nanotube-reinforced composite beams on nonlinear viscoelastic foundation

    No full text
    This paper deals with the nonlinear forced vibration of nanocomposite beams resting on a nonlinear viscoelastic foundation and subjected to a transverse periodic excitation. It is considered that the functionally graded carbon nanotubereinforced composite (FG-CNTRC) beam is made of an isotropic matrix reinforced by either aligned- or randomly oriented-straight single-walled carbon nanotubes (SWCNTs) with four types of distributions through the thickness direction of the beam. Both the Eshelby–Mori–Tanaka approach and extended rule of mixtures are used to predict the effective material properties of the FG-CNTRC beams. The mathematical model of the beam is developed based on the Euler–Bernoulli beam theory together with von Kármán assumptions. Subsequently, the accurate analytical solutions of the governing equation are obtained through applying the variational iteration method (VIM). Several examples are verified to have higher accuracy than those available in the literature. In addition, a comprehensive investigation into the effect of carbon nanotubes (CNTs) distribution, CNTs volume fraction, end supports, vibration amplitude, and foundation coefficients on the vibrational characteristics of the nanocomposite beam is performed and some new results are presented

    FSDT-Based Isogeometric Analysis for Free Vibration Behavior of Functionally Graded Skew Folded Plates

    Full text link
    corecore