1,947 research outputs found
Conceptual design of an on-board optical processor with components
The specification of components for a spacecraft on-board optical processor was investigated. A space oriented application of optical data processing and the investigation of certain aspects of optical correlators were examined. The investigation confirmed that real-time optical processing has made significant advances over the past few years, but that there are still critical components which will require further development for use in an on-board optical processor. The devices evaluated were the coherent light valve, the readout optical modulator, the liquid crystal modulator, and the image forming light modulator
Complex permittivity measurements of lunar samples at microwave and millimeter wavelengths
The relative dielectric constant and loss tangent of lunar sample 14163,164 (fine dust) were determined as a function of density at 9.375, 24, 35, and 60 GHz. In addition, such measurements have also been performed on lunar sample 14310,74 (solid rock) at 9.375 GHz. The loss tangent was found to be frequency independent at these test frequencies and had a value of 0.015 for the lunar dust sample
A study to analyze six band multispectral images and fabricate a Fourier transform detector
An automatic Fourier transform diffraction pattern sampling system, used to investigate techniques for forestry classification of six band multispectral aerial photography is presented. Photographs and diagrams of the design, development and fabrication of a hybrid optical-digital Fourier transform detector are shown. The detector was designed around a concentric ring fiber optic array. This array was formed from many optical fibers which were sorted into concentric rings about a single fiber. All the fibers in each ring were collected into a bundle and terminated into a single photodetector. An optical/digital interface unit consisting of a high level multiplexer, and an analog-to-digital amplifier was also constructed and is described
Dietary and Urinary Sulfur can Predict Changes in Bone Metabolism During Space Flight
Mitigating space flight-induced bone loss is critical for space exploration, and diet can play a major role in this effort. Previous ground-based studies provide evidence that dietary composition can influence bone resorption during bed rest. In this study we examined the role of dietary intake patterns as one factor that can influence bone mineral loss in astronauts during space flight. Crew members were asked to consume, for 4 days at a time, prescribed menus with either a low (0.3-0.6 g/mEq) or high (1.0-1.3 g/mEq) ratio of animal protein to potassium (APro:K). Menus were developed for each crewmember, and were designed to meet both crew preferences and study constraints. Intakes of energy, total protein, calcium, and sodium were held relatively constant between the two diets. The order of the menus was randomized, and crews completed each set (low and high) once before and twice during space flight, for a total of 6 controlled diet sessions. One inflight session and three postflight sessions (R+30, R+180, R+365) monitored typical dietary intake. As of this writing, data are available from 14 crew members. The final three subjects' inflight samples are awaiting return from the International Space Station via Space-X. On the last day of each of the 4-d controlled diet sessions, 24-h urine samples were collected, along with a fasting blood sample on the morning of the 5th day. Preliminary analyses show that urinary excretion of sulfate (normalized to lean body mass) is a significant predictor of urinary n-telopeptide (NTX). Dietary sulfate (normalized to lean body mass) is also a significant predictor of urinary NTX. The results from this study, will be important to better understand diet and bone interrelationships during space flight as well as on Earth. This study was funded by the Human Health Countermeasures Element of the NASA Human Research Program
Dietary Acid Load and Bone Turnover During Long-Duration Spaceflight and Bed Rest
Background Bed rest studies document that a lower dietary acid load is associated with lower bone resorption. Objective We tested the effect of dietary acid load on bone metabolism during spaceflight. Design Controlled 4-d diets with a high or low animal proteinto-potassium (APro:K) ratio (High and Low diets, respectively) were given to 17 astronauts before and during spaceflight. Each astronaut had 1 High and 1 Low diet session before flight and 2 High and 2 Low sessions during flight, in addition to a 4-d session around flight day 30 (FD30), when crew members were to consume their typical in-flight intake. At the end of each session, blood and urine samples were collected. Calcium, total protein, energy, and sodium were maintained in each crew member's preflight and in-flight controlled diets. Results Relative to preflight values, N-telopeptide (NTX) and urinary calcium were higher during flight, and bone-specific alkaline phosphatase (BSAP) was higher toward the end of flight. The High and Low diets did not affect NTX, BSAP, or urinary calcium. Dietary sulfur and age were significantly associated with changes in NTX. Dietary sodium and flight day were significantly associated with urinary calcium during flight. The net endogenous acid production (NEAP) estimated from the typical dietary intake at FD30 was associated with loss of bone mineral content in the lumbar spine after the mission. The results were compared with data from a 70-d bed rest study, in which control (but not exercising) subjects APro:K was associated with higher NTX during bed rest. Conclusions Long-term lowering of NEAP by increasing vegetable and fruit intake may protect against changes in loss of bone mineral content during spaceflight when adequate calcium is consumed, particularly if resistive exercise is not being performed. This trial was registered at clinicaltrials.gov as NCT01713634
What Happens to bone health during and after spaceflight?
Weightless conditions of space flight accelerate bone loss. There are no reports to date that address whether the bone that is lost during spaceflight could ever be recovered. Spaceinduced bone loss in astronauts is evaluated at the Johnson Space Center (JSC) by measurement of bone mineral density (BMD) by Dual-energy x-ray absorptiometry (DXA) scans. Astronauts are routinely scanned preflight and at various time points postflight (greater than or equal to Return+2 days). Two sets of BMD data were used to model spaceflight-induced loss and skeletal recovery in crewmembers following long-duration spaceflight missions (4-6 months). Group I was from astronauts (n=7) who were systematically scanned at multiple time points during the postflight period as part of a research protocol to investigate skeletal recovery. Group II came from a total of 49 sets of preflight and postflight data obtained by different protocols. These data were from 39 different crewmembers some of whom served on multiple flights. Changes in BMD (between pre- and postflight BMD) were plotted as a function of time (days-after-landing); plotted data were fitted to an exponential equation which enabled estimations of i) BMD change at day 0 after landing and ii) the number of days by which 50% of the lost bone is recovered (half-life). These fits were performed for BMD of the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. There was consistency between the models for BMD recovery. Based upon the exponential model of BMD restoration, recovery following long-duration missions appears to be substantially complete in crewmembers within 36 months following return to Earth
Conductivity of dielectric and thermal atom-wall interaction
We compare the experimental data of the first measurement of a temperature
dependence of the Casimir-Polder force by Obrecht et al. [Phys. Rev. Lett. {\bf
98}, 063201 (2007)] with the theory taking into account small, but physically
real, static conductivity of the dielectric substrate. The theory is found to
be inconsistent with the data. The conclusion is drawn that the conductivity of
dielectric materials should not be included in the model of the dielectric
response in the Lifshitz theory. This conclusion obtained from the long
separation measurement is consistent with related but different results
obtained for semiconductors and metals at short separations.Comment: 4 pages, 2 figures; page size is correcte
Earth: The Sequel The Race to Reinvent Energy and Stop Global Warming by Fred Krupp and Miriam Horn
Skeletal Recovery Following Long-Duration Spaceflight Missions as Determined by Preflight and Postflight DXA Scans of 45 Crew Members
Introduction: The loss of bone mineral in astronauts during spaceflight has been investigated throughout the more than 40 years of bone research in space. Consequently, it is a medical requirement at NASA that changes in bone mass be monitored in crew members by measurements of bone mineral density (BMD) with dual-energy x-ray absorptiometry (DXA). This report is the first to evaluate medical data to address the recovery of bone mineral that is lost during spaceflight. Methods: DXA scans are performed before and after flight in astronauts who serve on long-duration missions (4-6 months) to ensure that medical standards for flight certification are met, to evaluate the effects of spaceflight and to monitor the restoration to preflight BMD status after return to Earth. Through cooperative agreements with the Russian Space Agency, the Bone and Mineral Lab at NASA Johnson Space Center (Houston, TX), also had access to BMD data from cosmonauts who had flown on long-duration missions yielding data from a total of 45 individual crew members. Changes in BMD (between 56 different sets of pre- and postflight measurements) were plotted as a function of time (days after landing); plotted data were fitted to an exponential mathematical model that determined i) BMD change at day 0 after landing and ii) the number of days after which 50% of the lost bone was recovered ("Recovery Half-Life"). These fits were performed for BMD of the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. Results: In sum, averaged losses of bone mineral after spaceflight ranged between 2-9% for sites in the axial and appendicular skeleton. The fitted postflight BMD values predicted a 50% recovery of bone loss for all sites within 9 months
The trade off between diversity and quality for multi-objective workforce scheduling
In this paper we investigate and compare multi-objective and
weighted single objective approaches to a real world workforce scheduling
problem. For this difficult problem we consider the trade off in solution quality
versus population diversity, for different sets of fixed objective weights. Our
real-world workforce scheduling problem consists of assigning resources with
the appropriate skills to geographically dispersed task locations while satisfying
time window constraints. The problem is NP-Hard and contains the Resource
Constrained Project Scheduling Problem (RCPSP) as a sub problem. We investigate
a genetic algorithm and serial schedule generation scheme together with
various multi-objective approaches. We show that multi-objective genetic algorithms
can create solutions whose fitness is within 2% of genetic algorithms using
weighted sum objectives even though the multi-objective approaches know
nothing of the weights. The result is highly significant for complex real-world
problems where objective weights are seldom known in advance since it suggests
that a multi-objective approach can generate a solution close to the user
preferred one without having knowledge of user preferences
- …
