2,855 research outputs found

    Weakening and Shifting of the Saharan Shallow Meridional Circulation During Wet Years of the West African Monsoon

    Full text link
    The correlation between increased Sahel rainfall and reduced Saharan surface pressure is well established in observations and global climate models, and has been used to imply that increased Sahel rainfall is caused by a stronger shallow meridional circulation (SMC) over the Sahara. This study uses two atmospheric reanalyses to examine interannual variability of Sahel rainfall and the Saharan SMC, which consists of northward near-surface flow across the Sahel into the Sahara and southward flow near 700 hPa out of the Sahara. During wet Sahel years, the Saharan SMC shifts poleward, producing a drop in low-level geopotential and surface pressure over the Sahara. Statistically removing the effect of the poleward shift from the low-level geopotential eliminates significant correlations between this geopotential and Sahel precipitation. As the Saharan SMC shifts poleward, its mid-tropospheric divergent outflow decreases, indicating a weakening of its overturning mass flux. The poleward shift and weakening of the Saharan SMC during wet Sahel years is reproduced in an idealized model of West Africa; a wide range of imposed sea surface temperature and land surface albedo perturbations in this model produce a much larger range of SMC variations that nevertheless have similar quantitative associations with Sahel rainfall as in the reanalyses. These results disprove the idea that enhanced Sahel rainfall is caused by strengthening of the Saharan SMC. Instead, these results are consistent with the hypothesis that the a stronger SMC inhibits Sahel rainfall, perhaps by advecting mid-tropospheric warm and dry air into the precipitation maximum.Comment: Submitted to Journal of Climat

    Forbidden regimes in the distribution of bipartite quantum correlations due to multiparty entanglement

    Full text link
    Monogamy is a nonclassical property that limits the distribution of quantum correlation among subparts of a multiparty system. We show that monogamy scores for different quantum correlation measures are bounded above by functions of genuine multipartite entanglement for a large majority of pure multiqubit states. The bound is universal for all three-qubit pure states. We derive necessary conditions to characterize the states that violate the bound, which can also be observed by numerical simulation for a small set of states, generated Haar uniformly. The results indicate that genuine multipartite entanglement restricts the distribution of bipartite quantum correlations in a multiparty system.Comment: 15 pages, 3 figures, elsarticle, this is an author-created, un-copyedited final accepted versio

    Spin-lattice coupling mediated giant magnetodielectricity across the spin reorientation in Ca2FeCoO5

    Full text link
    The structural, phonon, magnetic, dielectric, and magneto dielectric responses of the pure bulk Brownmillerite compound Ca2FeCoO5 are reported. This compound showed giant magneto dielectric response (10%-24%) induced by strong spin-lattice coupling across its spin reorientation transition (150-250 K). The role of two Debye temperatures pertaining to differently coordinated sites in the dielectric relaxations is established. The positive giant magneto-dielectricity is shown to be a direct consequence of the modulations in the lattice degrees of freedom through applied external field across the spin reorientation transition. Our study illustrates novel control of magneto-dielectricity by tuning the spin reorientation transition in a material that possess strong spin lattice coupling.Comment: 7 pages, 12 figure

    Euler characteristic and congruences of elliptic curves

    Full text link
    Given two elliptic curves over Q that have good ordinary reduction at an odd prime p, and have equivalent, irreducible mod p Galois representations, we study congruences between the Euler characteristics and special L-values over certain noncommutative extensions of Q

    Surface acoustic wave hydrogen sensor

    Get PDF
    The present invention provides a delay line SAW device fabricated on a lithium niobate substrate and coated with a bilayer of nanocrystalline or other nanomaterials such as nanoparticles or nanowires of palladiumn and metal free pthalocyanine which will respond to hydrogen gas in near real time, at low (room) temperature, without being affected by CO, O.sub.2, CH.sub.4 and other gases, in air ambient or controlled ambient, providing sensitivity to low ppm levels

    Effect of La Doping on Microstructure and Critical Current Density of MgB2

    Full text link
    In the present study, La-doped MgB_2 superconductors with different doping level (Mg1-xLaxB2; x=0.00, 0.01, 0.03 & 0.05) have been synthesized by solid-state reaction route at ambient pressure. Effect of La doping have been investigated in relation to microstructural characteristics and superconducting properties, particularly intragrain critical current density (Jc). The microstructural characteristics of the as synthesized Mg(La)B2 compounds were studied employing transmission electron microscopic (TEM) technique. The TEM investigations reveal inclusion of LaB6 nanoparticles within the MgB2 grains which provide effective flux pinning centres. The evaluation of intragrain Jc through magnetic measurements on the fine powdered version of the as synthesized samples reveal that Jc of the samples change significantly with the doping level. The optimum result on Jc is obtained for Mg0.97La0.03B2 at 5K, the Jc reaches ~1.4x107A/cm2 in self field, ~2.1 x 106A/cm2 at 1T, ~2.5 x 105A/cm2 at 2.5T and ~1.8 x 104 A/cm2 at 4.5T. The highest value of intragrain Jc in Mg0.97La0.03B2 superconductor has been attributed to the inclusion of LaB6 nanoparticles which are capable of providing effective flux pinning centres

    Large nonlinear absorption and refraction coefficients of carbon nanotubes estimated from femtosecond Z-scan measurements

    Get PDF
    Nonlinear transmission of 80 and 140 femtosecond pulsed light with 0.79μm0.79 \mu m wavelength through single walled carbon nanotubes suspended in water containing sodium dodecyl sulphate is studied. Pulse-width independent saturation absorption and negative cubic nonlinearity are observed, respectively, in open and closed aperture Z-scan experiments. The theoretical expressions derived to analyze the z-dependent transmission in the saturable limit require two photon absorption coefficient β0\beta_0\sim 1.4cm/MW1.4 cm/MW and a nonlinear index γ5.5×1011cm2/W\gamma \sim -5.5 \times10^{-11} cm^2/W to fit the data.Comment: 10 pages, 2 figures. Accepted and to appear in Applied Physics Letter

    Thermopower and thermal conductivity in the Weyl semimetal NbP

    Full text link
    The Weyl semimetal NbP exhibits an extremely large magnetoresistance (MR) and an ultra-high mobility. The large MR originates from a combination of the nearly perfect compensation between electron- and hole-type charge carriers and the high mobility, which is relevant to the topological band structure. In this work we report on temperature- and field-dependent thermopower and thermal conductivity experiments on NbP. Additionally, we carried out complementary heat capacity, magnetization, and electrical resistivity measurements. We found a giant adiabatic magnetothermopower with a maximum of 800 μ\muV/K at 50 K in a field of 9 T. Such large effects have been observed rarely in bulk materials. We suggest that the origin of this effect might be related to the high charge-carrier mobility. We further observe pronounced quantum oscillations in both thermal conductivity and thermopower. The obtained frequencies compare well with our heat capacity and magnetization data.Comment: 6 pages, 3 figure
    corecore