837 research outputs found
Throughput Analysis of Primary and Secondary Networks in a Shared IEEE 802.11 System
In this paper, we analyze the coexistence of a primary and a secondary
(cognitive) network when both networks use the IEEE 802.11 based distributed
coordination function for medium access control. Specifically, we consider the
problem of channel capture by a secondary network that uses spectrum sensing to
determine the availability of the channel, and its impact on the primary
throughput. We integrate the notion of transmission slots in Bianchi's Markov
model with the physical time slots, to derive the transmission probability of
the secondary network as a function of its scan duration. This is used to
obtain analytical expressions for the throughput achievable by the primary and
secondary networks. Our analysis considers both saturated and unsaturated
networks. By performing a numerical search, the secondary network parameters
are selected to maximize its throughput for a given level of protection of the
primary network throughput. The theoretical expressions are validated using
extensive simulations carried out in the Network Simulator 2. Our results
provide critical insights into the performance and robustness of different
schemes for medium access by the secondary network. In particular, we find that
the channel captures by the secondary network does not significantly impact the
primary throughput, and that simply increasing the secondary contention window
size is only marginally inferior to silent-period based methods in terms of its
throughput performance.Comment: To appear in IEEE Transactions on Wireless Communication
A Similarity Measure for GPU Kernel Subgraph Matching
Accelerator architectures specialize in executing SIMD (single instruction,
multiple data) in lockstep. Because the majority of CUDA applications are
parallelized loops, control flow information can provide an in-depth
characterization of a kernel. CUDAflow is a tool that statically separates CUDA
binaries into basic block regions and dynamically measures instruction and
basic block frequencies. CUDAflow captures this information in a control flow
graph (CFG) and performs subgraph matching across various kernel's CFGs to gain
insights to an application's resource requirements, based on the shape and
traversal of the graph, instruction operations executed and registers
allocated, among other information. The utility of CUDAflow is demonstrated
with SHOC and Rodinia application case studies on a variety of GPU
architectures, revealing novel thread divergence characteristics that
facilitates end users, autotuners and compilers in generating high performing
code
Measurements of scattering observables for the break-up reaction
High-precision measurements of the scattering observables such as cross
sections and analyzing powers for the proton-deuteron elastic and break-up
reactions have been performed at KVI in the last two decades and elsewhere to
investigate various aspects of the three-nucleon force (3NF) effects
simultaneously. In 2006 an experiment was performed to study these effects in
break-up reaction at 135 MeV with the detection system, Big
Instrument for Nuclear polarization Analysis, BINA. BINA covers almost the
entire kinematical phase space of the break-up reaction. The results are
interpreted with the help of state-of-the-art Faddeev calculations and are
partly presented in this contribution.Comment: Proceedings of 19th International IUPAP Conference on Few-Body
Problems in Physics, Bonn University, 31.08 - 05.09.2009, Bonn, GERMAN
Optimal control, geometry, and quantum computing
We prove upper and lower bounds relating the quantum gate complexity of a
unitary operation, U, to the optimal control cost associated to the synthesis
of U. These bounds apply for any optimal control problem, and can be used to
show that the quantum gate complexity is essentially equivalent to the optimal
control cost for a wide range of problems, including time-optimal control and
finding minimal distances on certain Riemannian, subriemannian, and Finslerian
manifolds. These results generalize the results of Nielsen, Dowling, Gu, and
Doherty, Science 311, 1133-1135 (2006), which showed that the gate complexity
can be related to distances on a Riemannian manifoldComment: 7 Pages Added Full Names to Author
On the Effect of Quantum Interaction Distance on Quantum Addition Circuits
We investigate the theoretical limits of the effect of the quantum
interaction distance on the speed of exact quantum addition circuits. For this
study, we exploit graph embedding for quantum circuit analysis. We study a
logical mapping of qubits and gates of any -depth quantum adder
circuit for two -qubit registers onto a practical architecture, which limits
interaction distance to the nearest neighbors only and supports only one- and
two-qubit logical gates. Unfortunately, on the chosen -dimensional practical
architecture, we prove that the depth lower bound of any exact quantum addition
circuits is no longer , but . This
result, the first application of graph embedding to quantum circuits and
devices, provides a new tool for compiler development, emphasizes the impact of
quantum computer architecture on performance, and acts as a cautionary note
when evaluating the time performance of quantum algorithms.Comment: accepted for ACM Journal on Emerging Technologies in Computing
System
Quantum circuits for spin and flavor degrees of freedom of quarks forming nucleons
We discuss the quantum-circuit realization of the state of a nucleon in the
scope of simple symmetry groups. Explicit algorithms are presented for the
preparation of the state of a neutron or a proton as resulting from the
composition of their quark constituents. We estimate the computational
resources required for such a simulation and design a photonic network for its
implementation. Moreover, we highlight that current work on three-body
interactions in lattices of interacting qubits, combined with the
measurement-based paradigm for quantum information processing, may also be
suitable for the implementation of these nucleonic spin states.Comment: 5 pages, 2 figures, RevTeX4; Accepted for publication in Quantum
Information Processin
Synthesis and Optimization of Reversible Circuits - A Survey
Reversible logic circuits have been historically motivated by theoretical
research in low-power electronics as well as practical improvement of
bit-manipulation transforms in cryptography and computer graphics. Recently,
reversible circuits have attracted interest as components of quantum
algorithms, as well as in photonic and nano-computing technologies where some
switching devices offer no signal gain. Research in generating reversible logic
distinguishes between circuit synthesis, post-synthesis optimization, and
technology mapping. In this survey, we review algorithmic paradigms ---
search-based, cycle-based, transformation-based, and BDD-based --- as well as
specific algorithms for reversible synthesis, both exact and heuristic. We
conclude the survey by outlining key open challenges in synthesis of reversible
and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table
Towards an optimal swap gate
We present a novel approach that generalizes the well known quantum SWAP gate to higher dimensions and construct a regular quantum gate composed entirely in terms of the generalized CNOT gate that cyclically permutes the states of d qudits for d prime. We also investigate the case for d other than prime. A key feature of the construction design relates to the periodicity evaluation for a family of linear recurrences which we achieve by exploiting generating functions and their factorization over the complex reals
Economic Analysis of Traditional and Sri Method of Paddy Cultivation
The conventional paddy growing tracts are in worst crisis due to social, biological and technical setbacks. Well acclaimed rice bowls in several part of the nation is facing a decline in area, production and productivity. In India, there is a growing demand for rice due to ever escalating population. Rice is consumed both in urban and rural area and its consumption is growing due to high-income elasticity of demand. To meet the growing demand, a rapid income in paddy production is needed. But there is little scope to increase the area; hence increase in production and productivity with an improvement in efficiency of production to act as a technological breakthrough to meet the growing demand
A Review: Video Steganography for Hiding Data
Steganography is an art of hiding the secrete message that is being send in the other non secret text. The benefit of steganography is that the expected mystery message does not pull in thoughtfulness regarding itself as an object of investigation. Our point is to conceal mystery data and picture behind the sound and feature document individually. Sound records are generally compacted for capacity or speedier transmission. Sound records can be sent in short remain solitary portions
- …
