6,932 research outputs found
Systemic Therapy in Endometrial Cancer: Recent Advances.
Endometrial cancer is a chemosensitive disease. Studies have established a clear benefit of chemotherapy in advanced stages and trials are ongoing to define its role in early stages as well. As more molecular pathways are being elucidated there is increasing role for targeted agents and future looks quite promising. We did an extensive search both online and offline for all the relevant articles including chemotherapy and targeted therapy for endometrial cancer
IMF isotopic properties in semi-peripheral collisions at Fermi energies
We study the neutron and proton dynamical behavior along the fragmentation
path in semi-peripheral collisions: 58Fe+58Fe (charge asymmetric, N/Z = 1.23)
and 58Ni+58Ni (charge symmetric, N/Z = 1.07), at 47 AMeV. We observe that
isospin dynamics processes take place also in the charge-symmetric system
58Ni+58Ni, that may produce more asymmetric fragments. A neutron enrichment of
the neck fragments is observed, resulting from the interplay between
pre-equilibrium emission and the phenomenon of "isospin-migration". Both
effects depend on the EoS (Equation of State) symmetry term. This point is
illustrated by comparing the results obtained with two different choices of the
symmetry energy density dependence.
New correlation observables are suggested, to study the reaction mechanism
and the isospin dynamics.Comment: 5 pages, 8 figures, Revtex4 Latex Styl
Timescale for equilibration of N/Z gradients in dinuclear systems
Equilibration of N/Z in binary breakup of an excited and transiently deformed
projectile-like fragment (PLF*), produced in peripheral collisions of 64Zn +
27Al, 64Zn, 209Bi at E/A = 45 MeV, is examined. The composition of emitted
light fragments (3<=Z<=6) changes with the decay angle of the PLF*. The most
neutron-rich fragments observed are associated with a small rotation angle. A
clear target dependence is observed with the largest initial N/Z correlated
with the heavy, neutron-rich target. Using the rotation angle as a clock, we
deduce that N/Z equilibration persists for times as long as 3-4 zs (1zs = 1 x
10^-21 s = 300 fm/c). The rate of N/Z equilibration is found to depend on the
initial neutron gradient within the PLF*.Comment: 6 pages, 4 figure
The Mass-Size Relation from Clouds to Cores. I. A new Probe of Structure in Molecular Clouds
We use a new contour-based map analysis technique to measure the mass and
size of molecular cloud fragments continuously over a wide range of spatial
scales (0.05 < r / pc < 10), i.e., from the scale of dense cores to those of
entire clouds. The present paper presents the method via a detailed exploration
of the Perseus Molecular Cloud. Dust extinction and emission data are combined
to yield reliable scale-dependent measurements of mass.
This scale-independent analysis approach is useful for several reasons.
First, it provides a more comprehensive characterization of a map (i.e., not
biased towards a particular spatial scale). Such a lack of bias is extremely
useful for the joint analysis of many data sets taken with different spatial
resolution. This includes comparisons between different cloud complexes.
Second, the multi-scale mass-size data constitutes a unique resource to derive
slopes of mass-size laws (via power-law fits). Such slopes provide singular
constraints on large-scale density gradients in clouds.Comment: accepted to ApJ; references updated in new versio
Distribution and mass of diffuse and dense CO gas in the Milky Way
This is the final version of the article. Available from American Astronomical Society and IOP Publishing via the DOI in this record.Emission from carbon monoxide (CO) is ubiquitously used as a tracer of dense star-forming molecular clouds. There is, however, growing evidence that a significant fraction of CO emission originates from diffuse molecular gas. Quantifying the contribution of diffuse CO-emitting gas is vital for understanding the relation between molecular gas and star formation. We examine the Galactic distribution of two CO-emitting gas components, a high column density component detected in 13CO and 12CO, and a low column density component detected in 12CO, but not in 13CO. The “diffuse” and “dense” components are identified using a combination of smoothing, masking, and erosion/dilation procedures, making use of three large-scale 12CO and 13CO surveys of the inner and outer Milky Way. The diffuse component, which globally represents 25% (1.5 × 108M⊙) of the total molecular gas mass (6.5 × {10}8 M⊙), is more extended perpendicular to the Galactic plane. The fraction of diffuse gas increases from ∼10%–20% at a galactocentric radius of 3–4 kpc to 50% at 15 kpc, and increases with decreasing surface density. In the inner Galaxy, a yet denser component traced by CS emission represents 14% of the total molecular gas mass traced by 12CO emission. Only 14% of the molecular gas mass traced by 12CO emission is identified as part of molecular clouds in 13CO surveys by cloud identification algorithms. This study indicates that CO emission not only traces star-forming clouds, but also a significant diffuse molecular ISM component.R.S. and R.S.K. acknowledge support from the Deutsche
Forschungsgemeinschaft (DFG) for funding through the SPP
1573 “The Physics of the Interstellar Medium” as well as via
SFB 881 “The Milky Way System” (sub-projects B12, and
B8). R.S.K. also receives funding from the European Research
Council under the European Communitys Seventh Framework
Program (FP7/2007-2013) via the ERC Advanced Grant
“STARLIGHT” (project number 339177)
The Mass-Size Relation from Clouds to Cores. II. Solar Neighborhood Clouds
We measure the mass and size of cloud fragments in several molecular clouds
continuously over a wide range of spatial scales (0.05 < r / pc < 3). Based on
the recently developed "dendrogram-technique", this characterizes dense cores
as well as the enveloping clouds. "Larson's 3rd Law" of constant column
density, m(r) = C*r^2, is not well suited to describe the derived mass-size
data. Solar neighborhood clouds not forming massive stars (< 10 M_sun; Pipe
Nebula, Taurus, Perseus, and Ophiuchus) obey m(r) < 870 M_sun (r / pc)^1.33 .
In contrast to this, clouds forming massive stars (Orion A, G10.150.34,
G11.110.12) do exceed the aforementioned relation. Thus, this limiting
mass-size relation may approximate a threshold for the formation of massive
stars. Across all clouds, cluster-forming cloud fragments are found to be---at
given radius---more massive than fragments devoid of clusters. The
cluster-bearing fragments are found to roughly obey a mass-size law m =
C*r^1.27 (where the exponent is highly uncertain in any given cloud, but is
certainly smaller than 1.5).Comment: accepted to the Astrophysical Journa
Phase diagram of neutron-rich nuclear matter and its impact on astrophysics
Dense matter as it can be found in core-collapse supernovae and neutron stars
is expected to exhibit different phase transitions which impact the matter
composition and equation of state, with important consequences on the dynamics
of core-collapse supernova explosion and on the structure of neutron stars. In
this paper we will address the specific phenomenology of two of such
transitions, namely the crust-core solid-liquid transition at sub-saturation
density, and the possible strange transition at super-saturation density in the
presence of hyperonic degrees of freedom. Concerning the neutron star
crust-core phase transition at zero and finite temperature, it will be shown
that, as a consequence of the presence of long-range Coulomb interactions, the
equivalence of statistical ensembles is violated and a clusterized phase is
expected which is not accessible in the grand-canonical ensemble. A specific
quasi-particle model will be introduced to illustrate this anomalous
thermodynamics and some quantitative results relevant for the supernova
dynamics will be shown. The opening of hyperonic degrees of freedom at higher
densities corresponding to the neutron stars core modifies the equation of
state. The general characteristics and order of phase transitions in this
regime will be analyzed in the framework of a self-consistent mean-field
approach.Comment: Invited Talk given at the 11th International Conference on
Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1,
2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference
Series (JPCS
Enhanced Production of Neutron-Rich Rare Isotopes in Peripheral Collisions at Fermi Energies
A large enhancement in the production of neutron-rich projectile residues is
observed in the reactions of a 25 MeV/nucleon 86Kr beam with the neutron rich
124Sn and 64Ni targets relative to the predictions of the EPAX parametrization
of high-energy fragmentation, as well as relative to the reaction with the less
neutron-rich 112Sn target. The data demonstrate the significant effect of the
target neutron-to-proton ratio (N/Z) in peripheral collisions at Fermi
energies. A hybrid model based on a deep-inelastic transfer code (DIT) followed
by a statistical de-excitation code appears to account for part of the observed
large cross sections. The DIT simulation indicates that the production of the
neutron-rich nuclides in these reactions is associated with peripheral nucleon
exchange. In such peripheral encounters, the neutron skins of the neutron-rich
124Sn and 64Ni target nuclei may play an important role. From a practical
viewpoint, such reactions between massive neutron-rich nuclei offer a novel and
attractive synthetic avenue to access extremely neutron-rich rare isotopes
towards the neutron-drip line.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
- …
