392 research outputs found

    An Automatic Technique for MRI Based Murine Abdominal Fat Measurement

    Get PDF
    Because of the well-known relationship between obesity and high incidence of diseases, fat related research using mice models is being widely investigated in preclinical experiments. In the present study, we developed a technique to automatically measure mice abdominal adipose volume and determine the depot locations using Magnetic Resonance Imaging (MRI). Our technique includes an innovative method to detect fat tissues from MR images which not only utilizes the T1 weighted intensity information, but also takes advantage of the transverse relaxation time(T2) calculated from the multiple echo data. The technique contains both a fat optimized MRI imaging acquisition protocol that works well at 7T and a newly designed post processing methodology that can automatically accomplish the fat extraction and depot recognition without user intervention in the segmentation procedure. The post processing methodology has been integrated into easy-to-use software that we have made available via free download. The method was validated by comparing automated results with two independent manual analyses in 26 mice exhibiting different fat ratios from the obesity research project. The comparison confirms a close agreement between the results in total adipose tissue size and voxel-by-voxel overlaps

    Acrosome components after intracytoplasmic sperm injection: the decondensation frontier

    Get PDF
    http://www.sciencedirect.com/science/article/B6T6K-43CBFGC-14/1/c122d3f8e7188ef9ec4a133a8068995

    Central spindle self-organization and cytokinesis in artificially activated sea urchin eggs

    Get PDF
    Author Posting. © Marine Biological Laboratory, 2016. This article is posted here by permission of Marine Biological Laboratory for personal use, not for redistribution. The definitive version was published in Biological Bulletin 230, no.2 (2016): 85-95.The ability of microtubules of the mitotic apparatus to control the positioning and initiation of the cleavage furrow during cytokinesis was first established from studies on early echinoderm embryos. However, the identity of the microtubule population that imparts cytokinetic signaling is unclear. The two main––and not necessarily mutually exclusive–– candidates are the central spindle and the astral rays. In the present study, we examined cytokinesis in ammonia-activated sea urchin eggs, which lack paternally derived centrosomes and undergo mitosis mediated by unusual anastral, bipolar mini-spindles. Live cell imaging and immunolabeling for microtubules and the centralspindlin constituent and kinesin-related protein, MKLP1, demonstrated that furrowing in ammonia-activated eggs was associated with aligned arrays of centralspindlin-linked, opposed bundles of antiparallel microtubules. These autonomous, zipper- like arrays were not associated with a mitotic apparatus, but did possess characteristics similar to the central spindle region of control, fertilized embryos. Our results highlight the self-organizing nature of the central spindle region and its ability to induce cytokinesis-like furrowing, even in the absence of a complete mitotic apparatus.This research was supported by student/faculty summer research grants from the Dickinson College Research and Development Committee to JHH; Laura and Arthur Colwin Summer Research Fellowships from the MBL to JHH and CBS; a National Science Foundation Major Research Instrumentation grant to JHH (MRI-0320606); and a NSF collaborative research grant to JHH (MCB-1412688) and to CBS (MCB- 1412734)

    Early life programming and neurodevelopmental disorders.

    Get PDF
    For more than a century, clinical investigators have focused on early life as a source of adult psychopathology. Early theories about psychic conflict and toxic parenting have been replaced by more recent formulations of complex interactions of genes and environment. Although the hypothesized mechanisms have evolved, a central notion remains: early life is a period of unique sensitivity during which experience confers enduring effects. The mechanisms for these effects remain almost as much a mystery today as they were a century ago. Recent studies suggest that maternal diet can program offspring growth and metabolic pathways, altering lifelong susceptibility to diabetes and obesity. If maternal psychosocial experience has similar programming effects on the developing offspring, one might expect a comparable contribution to neurodevelopmental disorders, including affective disorders, schizophrenia, autism, and eating disorders. Due to their early onset, prevalence, and chronicity, some of these disorders, such as depression and schizophrenia, are among the highest causes of disability worldwide according to the World Health Organization 2002 report. Consideration of the early life programming and transcriptional regulation in adult exposures supports a critical need to understand epigenetic mechanisms as a critical determinant in disease predisposition. Incorporating the latest insight gained from clinical and epidemiological studies with potential epigenetic mechanisms from basic research, the following review summarizes findings from a workshop on Early Life Programming and Neurodevelopmental Disorders held at the University of Pennsylvania in 2009

    Determinantes Nacionais e Setoriais da Estrutura de Capital na América Latina

    Get PDF
    This study identified the role of the national environment (the Macroeconomy, Financial Development and Institutional Quality) and industry characteristics (Munificence, Dynamism, Concentration, Life Cycle, Technological Efficiency Dispersion, Product Quality Dispersion, Customer Bargaining Power and Supplier Bargaining Power) on debt of 612 listed companies from 7 Latin American countries (Argentina, Brazil, Chile, Colombia, Mexico, Peru and Venezuela). For comparison purposes, the analysis is also extended to 847 U.S. companies. The period of study is 1996-2009 and the analysis employed a Hierarchical Linear Model, which controls the effects according to the level of the variables (country, industry, time and firm). The results suggest that Financial Development eases access to external funds and Institutional Quality is negatively related to firm Leverage. The research also finds evidence that institutional quality can promote asymmetrical development between stock markets and credit markets

    Sex matters during adolescence: Testosterone-related cortical thickness maturation differs between boys and girls

    Get PDF
    Age-related changes in cortical thickness have been observed during adolescence, including thinning in frontal and parietal cortices, and thickening in the lateral temporal lobes. Studies have shown sex differences in hormone-related brain maturation when boys and girls are age-matched, however, because girls mature 1-2 years earlier than boys, these sex differences could be confounded by pubertal maturation. To address puberty effects directly, this study assessed sex differences in testosterone-related cortical maturation by studying 85 boys and girls in a narrow age range and matched on sexual maturity. We expected that testosterone-by-sex interactions on cortical thickness would be observed in brain regions known from the animal literature to be high in androgen receptors. We found sex differences in associations between circulating testosterone and thickness in left inferior parietal lobule, middle temporal gyrus, calcarine sulcus, and right lingual gyrus, all regions known to be high in androgen receptors. Visual areas increased with testosterone in boys, but decreased in girls. All other regions were more impacted by testosterone levels in girls than boys. The regional pattern of sex-by-testosterone interactions may have implications for understanding sex differences in behavior and adolescent-onset neuropsychiatric disorders. © 2012 Bramen et al

    AVPV neurons containing estrogen receptor-beta in adult male rats are influenced by soy isoflavones

    Get PDF
    BACKGROUND: Isoflavones, the most abundant phytoestrogens in soy foods, are structurally similar to 17beta-estradiol. It is known that 17beta-estradiol induces apoptosis in anteroventral periventricular nucleus (AVPV) in rat brain. Also, there is evidence that consumption of soy isoflavones reduces the volume of AVPV in male rats. Therefore, in this study, we examined the influence of dietary soy isoflavones on apoptosis in AVPV of 150 day-old male rats fed either a soy isoflavone-free diet (Phyto-free) or a soy isoflavone-rich diet (Phyto-600). RESULTS: The occurrence of apoptosis in AVPV was examined by TUNEL staining. The incidence of apoptosis was about 10 times higher in the Phyto-600 group (33.1 ± 1.7%) than in the Phyto-free group (3.6 ± 1.0%). Furthermore, these apoptotic cells were identified as neurons by dual immunofluorescent staining of GFAP and NeuN as markers of astrocytes and neurons, respectively. Then the dopaminergic neurons in AVPV were detected by immunohistochemistry staining of tyrosine hydroxylase (TH). No significant difference in the number of TH neurons was observed between the diet treatment groups. When estrogen receptor (ER) alpha and beta were examined by immunohistochemistry, we observed a 22% reduction of ERbeta-positive cell numbers in AVPV with consumption of soy isoflavones, whereas no significant change in ERalpha-positive cell numbers was detected. Furthermore, almost all the apoptotic cells were ERbeta-immunoreactive (ir), but not ERalpha-ir. Last, subcutaneous injections of equol (a major isoflavone metabolite) that accounts for approximately 70–90% of the total circulating plasma isoflavone levels did not alter the volume of AVPV in adult male rats. CONCLUSION: In summary, these findings provide direct evidence that consumption of soy isoflavones, but not the exposure to equol, influences the loss of ERbeta-containing neurons in male AVPV

    Male-like sexual behavior of female mouse lacking fucose mutarotase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutarotases are recently characterized family of enzymes that are involved in the anomeric conversions of monosaccharides. The mammalian fucose mutarotase (FucM) was reported in cultured cells to facilitate fucose utilization and incorporation into protein by glycosylation. However, the role of this enzyme in animal has not been elucidated.</p> <p>Results</p> <p>We generated a mutant mouse specifically lacking the fucose mutarotase (FucM) gene. The <it>FucM </it>knockout mice displayed an abnormal sexual receptivity with a drastic reduction in lordosis score, although the animals were fertile due to a rare and forced intromission by a typical male. We examined the anteroventral periventricular nucleus (AVPv) of the preoptic region in brain and found that the mutant females showed a reduction in tyrosine hydoxylase positive neurons compared to that of a normal female. Furthermore, the mutant females exhibited a masculine behavior, such as mounting to a normal female partner as well as showing a preference to female urine. We found a reduction of fucosylated serum alpha-fetoprotein (AFP) in a mutant embryo relative to that of a wild-type embryo.</p> <p>Conclusions</p> <p>The observation that <it>FucM</it><sup>-/- </sup>female mouse exhibits a phenotypic similarity to a wild-type male in terms of its sexual behavior appears to be due to the neurodevelopmental changes in preoptic area of mutant brain resembling a wild-type male. Since the previous studies indicate that AFP plays a role in titrating estradiol that are required to consolidate sexual preference of female mice, we speculate that the reduced level of AFP in <it>FucM</it><sup>-/- </sup>mouse, presumably resulting from the reduced fucosylation, is responsible for the male-like sexual behavior observed in the FucM knock-out mouse.</p

    Evidence of maternal QTL affecting growth and obesity in adult mice

    Get PDF
    Most quantitative trait loci (QTL) studies fail to account for the effect that the maternal genotype may have on an individual’s phenotypes, even though maternal effect QTL have been shown to account for considerable variation in growth and obesity traits in mouse models. Moreover, the fetal programming theory suggests that maternal effects influence an offspring’s adult fitness, although the genetic nature of fetal programming remains unclear. Within this context, our study focused on mapping genomic regions associated with maternal effect QTL by analyzing the phenotypes of chromosomes 2 and 7 subcongenic mice from genetically distinct dams. We analyzed 12 chromosome 2 subcongenic strains that spanned from 70 to 180 Mb with CAST/EiJ donor regions on the background of C57BL/6 J, and 14 chromosome 7 subcongenic strains that spanned from 81 to 111 Mb with BALB/cByJ donor regions on C57BL/6ByJ background. Maternal QTL analyses were performed on the basis of overlapping donor regions between subcongenic strains. We identified several highly significant (P < 5 × 10−4) maternal QTL influencing total body weight, organ weight, and fat pad weights in both sets of subcongenics. These QTL accounted for 1.9-11.7% of the phenotypic variance for growth and obesity and greatly narrowed the genomic regions associated with the maternal genetic effects. These maternal effect QTL controlled phenotypic traits in adult mice, suggesting that maternal influences at early stages of development may permanently affect offspring performance. Identification of maternal effects in our survey of two sets of subcongenic strains, representing approximately 5% of the mouse genome, supports the hypothesis that maternal effects represent significant sources of genetic variation that are largely ignored in genetic studies
    corecore