18 research outputs found
Comparative Genomics of Synechococcus elongatus Explains the Phenotypic Diversity of the Strains
Strains of the freshwater cyanobacterium Synechococcus elongatus were first isolated approximately 60 years ago, and PCC 7942 is well established as a model for photosynthesis, circadian biology, and biotechnology research. The recent isolation of UTEX 3055 and subsequent discoveries in biofilm and phototaxis phenotypes suggest that lab strains of S. elongatus are highly domesticated. We performed a comprehensive genome comparison among the available genomes of S. elongatus and sequenced two additional laboratory strains to trace the loss of native phenotypes from the standard lab strains and determine the genetic basis of useful phenotypes. The genome comparison analysis provides a pangenome description of S. elongatus, as well as correction of extensive errors in the published sequence for the type strain PCC 6301. The comparison of gene sets and single nucleotide polymorphisms (SNPs) among strains clarifies strain isolation histories and, together with large-scale genome differences, supports a hypothesis of laboratory domestication. Prophage genes in laboratory strains, but not UTEX 3055, affect pigmentation, while unique genes in UTEX 3055 are necessary for phototaxis. The genomic differences identified in this study include previously reported SNPs that are, in reality, sequencing errors, as well as SNPs and genome differences that have phenotypic consequences. One SNP in the circadian response regulator rpaA that has caused confusion is clarified here as belonging to an aberrant clone of PCC 7942, used for the published genome sequence, that has confounded the interpretation of circadian fitness research
Biodegradation of renewable polyurethane foams in marine environments occurs through depolymerization by marine microorganisms
Rapid biodegradation of renewable polyurethane foams with identification of associated microorganisms and decomposition products
Recommended from our members
Rapid biodegradation of renewable polyurethane foams with identification of associated microorganisms and decomposition products
Phototaxis in a wild isolate of the cyanobacterium Synechococcus elongatus.
Many cyanobacteria, which use light as an energy source via photosynthesis, have evolved the ability to guide their movement toward or away from a light source. This process, termed "phototaxis," enables organisms to localize in optimal light environments for improved growth and fitness. Mechanisms of phototaxis have been studied in the coccoid cyanobacterium Synechocystis sp. strain PCC 6803, but the rod-shaped Synechococcus elongatus PCC 7942, studied for circadian rhythms and metabolic engineering, has no phototactic motility. In this study we report a recent environmental isolate of S. elongatus, the strain UTEX 3055, whose genome is 98.5% identical to that of PCC 7942 but which is motile and phototactic. A six-gene operon encoding chemotaxis-like proteins was confirmed to be involved in phototaxis. Environmental light signals are perceived by a cyanobacteriochrome, PixJSe (Synpcc7942_0858), which carries five GAF domains that are responsive to blue/green light and resemble those of PixJ from Synechocystis Plate-based phototaxis assays indicate that UTEX 3055 uses PixJSe to sense blue and green light. Mutation of conserved functional cysteine residues in different GAF domains indicates that PixJSe controls both positive and negative phototaxis, in contrast to the multiple proteins that are employed for implementing bidirectional phototaxis in Synechocystis
Metal Coordination-Directed Hydroxylation of Steroids with a Novel Artificial P-450 Catalyst
An elongated spine of buried core residues necessary for in vivo folding of the parallel β-helix of P22 tailspike adhesin
The parallel β-helix is an elongated β-sheet protein domain associated with microbial virulence factors, toxins, viral adhesins, and allergens. Long stacks of similar, buried residues are a prominent feature of this fold, as well as the polypeptide chain fold of an amyloid structure. The 13-rung, right-handed, parallel β-helix of the homotrimeric P22 tailspike adhesin exhibits predominantly hydrophobic stacks. The role of these stacked residues in the folding and stabilization of the protein is unclear. Through scanning alanine mutagenesis we have identified a folding spine of stacked residues in continuous contact along the length of P22 tailspike’s β-helix domain that is necessary for folding within cells. Nearly all chains carrying alanine substitutions of the 103 buried nonalanines were defective in folding in vivo at 37°C. However, the majority of these chains successfully reached a native state, stable to >80°C, when folded inside cells at low temperatures. Thus, nearly the entire buried core was critical for in vivo β-helix folding but negligible for stability. Folding at 18°C revealed the minimal folding spine of 29 nonglycine stack positions that were intolerant to alanine substitution. These results indicate that a processive folding mechanism, dependent on stacking contacts, controls β-helix formation. Such a stepwise folding pathway offers a new target for drug design against this class of microbial virulence factors
