21,752 research outputs found

    Spectroscopy and Photometry of Cataclysmic Variable Candidates from the Catalina Real Time Survey

    Get PDF
    The Catalina Real Time Survey (CRTS) has found over 500 cataclysmic variable (CV) candidates, most of which were previously unknown. We report here on followup spectroscopy of 36 of the brighter objects. Nearly all the spectra are typical of CVs at minimum light. One object appears to be a flare star, while another has a spectrum consistent with a CV but lies, intriguingly, at the center of a small nebulosity. We measured orbital periods for eight of the CVs, and estimated distances for two based on the spectra of their secondary stars. In addition to the spectra, we obtained direct imaging for an overlapping sample of 37 objects, for which we give magnitudes and colors. Most of our new orbital periods are shortward of the so-called period gap from roughly 2 to 3 hours. By considering the cross-identifications between the Catalina objects and other catalogs such as the Sloan Digital Sky Survey, we argue that a large number of cataclysmic variables remain uncatalogued. By comparing the CRTS sample to lists of previously-known CVs that CRTS does not recover, we find that the CRTS is biased toward large outburst amplitudes (and hence shorter orbital periods). We speculate that this is a consequence of the survey cadence.Comment: Accepted for publication in The Astronomical Journal. 35 pages, including 7 figure

    Cataclysmic Variables in the SUPERBLINK Proper Motion Survey

    Get PDF
    We have discovered a new high proper motion cataclysmic variable (CV) in the SUPERBLINK proper motion survey, which is sensitive to stars with proper motions greater than 40 mas/yr. This CV was selected for follow-up observations as part of a larger search for CVs selected based on proper motions and their NUV-V and V-Ks_{s} colors. We present spectroscopic observations from the 2.4m Hiltner Telescope at MDM Observatory. The new CV's orbital period is near 96 minutes, its spectrum shows the double-peaked Balmer emission lines characteristic of quiescent dwarf novae, and its V magnitude is near 18.2. Additionally, we present a full list of known CVs in the SUPERBLINK catalog.Comment: Accepted for publication in The Astronomical Journal, 22 pages, 6 figure

    Optical Studies of Twenty Longer-Period Cataclysmic Binaries

    Full text link
    We obtained time-series radial velocity spectroscopy of twenty cataclysmic variable stars, with the aim of determining orbital periods P_orb. All of the stars reported here prove to have P_orb > 3.5 h. For sixteen of the stars, these are the first available period determinations, and for the remaining four (V709 Cas, AF Cam, V1062 Tau, and RX J2133+51) we use new observations to improve the accuracy of previously-published periods. Most of the targets are dwarf novae, without notable idiosyncracies. Of the remainder, three (V709 Cas, V1062 Tau, and RX J2133+51) are intermediate polars (DQ Her stars); one (IPHAS 0345) is a secondary-dominated system without known outbursts, similar to LY UMa; one (V1059 Sgr) is an old nova; and two others (V478 Her and V1082 Sgr) are long-period novalike variables. The stars with new periods are IPHAS 0345 (0.314 d); V344 Ori (0.234 d); VZ Sex (0.149 d); NSVS 1057+09 (0.376 d); V478 Her (0.629 d); V1059 Sgr (0.286 d); V1082 Sgr (0.868 d); FO Aql (0.217 d); V587 Lyr (0.275 d); V792 Cyg (0.297 d); V795 Cyg (0.181 d); V811 Cyg (0.157 d); V542 Cyg (0.182 d); PQ Aql (0.247 d); V516 Cyg (0.171 d); and VZ Aqr(0.161 d). Noteworthy results on individual stars are as follows. We see no indication of the underlying white dwarf star in V709 Cas, as has been previously claimed; based on the non-detection of the secondary star, we argue that the system is farther away that had been thought and the white dwarf contribution is probably negligible. V478 Her had been classified as an SU UMa-type dwarf nova, but this is incompatible with the long orbital period we find. We report the first secondary-star velocity curve for V1062 Tau. In V542 Cyg, we find a late-type contribution that remains stationary in radial velocity, yet the system is unresolved in a direct image, suggesting that it is a hierarchical triple system.Comment: P.A.S.P., in press. 34 pages and 8 figure

    Carballido: Temática y forma de tres autos.

    Get PDF
    Carballido: Temática y forma de tres autos

    Reflections on inside-outside space

    Get PDF

    Chandra Reveals Variable Multi-Component X-ray Emission from FU Orionis

    Full text link
    FU Orionis is the prototype of a class of eruptive young stars (``FUors'') characterized by strong optical outbursts. We recently completed an exploratory survey of FUors using XMM-Newton to determine their X-ray properties, about which little was previously known. The prototype FU Ori and V1735 Cyg were detected. The X-ray spectrum of FU Ori was found to be unusual, consisting of a cool moderately-absorbed component plus a hotter component viewed through an absorption column density that is an order of magnitude higher. We present here a sensitive (99 ks) follow-up X-ray observation of FU Ori obtained at higher angular resolution with Chandra ACIS-S. The unusual multi-component spectrum is confirmed. The hot component is centered on FU Ori and dominates the emission above 2 keV. It is variable (a signature of magnetic activity) and is probably coronal emission originating close to FU Ori's surface viewed through cool gas in FU Ori's strong wind or accretion stream. In contrast, the X-ray centroid of the soft emission below 2 keV is offset 0.20 arcsec to the southeast of FU Ori, toward the near-IR companion (FU Ori S). This offset amounts to slightly less than half the separation between the two stars. The most likely explanation for the offset is that the companion contributes significantly to the softer X-ray emission below 2 keV (and weakly above 2 keV). The superimposed X-ray contributions from FU Ori and the companion resolve the paradox posed by XMM-Newton of an apparently single X-ray source viewed through two different absorption columns.Comment: 21 pages, 3 tables, 6 figure
    corecore