410 research outputs found
Using conceptual metaphor and functional grammar to explore how language used in physics affects student learning
This paper introduces a theory about the role of language in learning
physics. The theory is developed in the context of physics students' and
physicists' talking and writing about the subject of quantum mechanics. We
found that physicists' language encodes different varieties of analogical
models through the use of grammar and conceptual metaphor. We hypothesize that
students categorize concepts into ontological categories based on the
grammatical structure of physicists' language. We also hypothesize that
students over-extend and misapply conceptual metaphors in physicists' speech
and writing. Using our theory, we will show how, in some cases, we can explain
student difficulties in quantum mechanics as difficulties with language.Comment: Accepted for publication in Phys. Rev. ST:PE
Quantum radiation in external background fields
A canonical formalism is presented which allows for investigations of quantum
radiation induced by localized, smooth disturbances of classical background
fields by means of a perturbation theory approach. For massless,
non-selfinteracting quantum fields at zero temperature we demonstrate that the
low-energy part of the spectrum of created particles exhibits a non-thermal
character. Applied to QED in varying dielectrics the response theory approach
facilitates to study two distinct processes contributing to the production of
photons: the squeezing effect due to space-time varying properties of the
medium and of the velocity effect due to its motion. The generalization of this
approach to finite temperatures as well as the relation to sonoluminescence is
indicated.Comment: 20 page
Chemical equilibration of strangeness
Thermal models are very useful in the understanding of particle production in
general and especially in the case of strangeness. We summarize the assumptions
which go into a thermal model calculation and which differ in the application
of various groups. We compare the different results to each other. Using our
own calculation we discuss the validity of the thermal model and the amount of
strangeness equilibration at CERN-SPS energies. Finally the implications of the
thermal analysis on the reaction dynamics are discussed.Comment: 23 pages, LaTeX (figures included); Talk given at the Int. Symposium
on Strangeness in Quark Matter 1997, Santorini (Greece), April 199
Strange Messages: Chemical and Thermal Freeze-out in Nuclear Collisions
Thermal models are commonly used to interpret heavy-ion data on particle
yields and spectra and to extract the conditions of chemical and thermal
freeze-out in heavy-ion collisions. I discuss the usefulness and limitations of
such thermal model analyses and review the experimental and theoretical
evidence for thermalization in nuclear collisions. The crucial role of
correlating strangeness production data with single particle spectra and
two-particle correlation measurements is pointed out. A consistent dynamical
picture for the heavy-ion data from the CERN SPS involves an initial
prehadronic stage with deconfined color and with an appreciable isotropic
pressure component. This requires an early onset of thermalization.Comment: 15 pages, 2 figures, talk given at Strange Quark Matter '98, Padova,
Italy, 20-24 July 1998, to be published in J. Phys. G 25; final version with
updated reference
Histological assessment of paxgene tissue fixation and stabilization reagents
Within SPIDIA, an EC FP7 project aimed to improve pre analytic procedures, the PAXgene Tissue System (PAXgene), was designed to improve tissue quality for parallel molecular and morphological analysis. Within the SPIDIA project promising results were found in both genomic and proteomic experiments with PAXgene-fixed and paraffin embedded tissue derived biomolecules. But, for this technology to be accepted for use in both clinical and basic research, it is essential that its adequacy for preserving morphology and antigenicity is validated relative to formalin fixation. It is our aim to assess the suitability of PAXgene tissue fixation for (immuno)histological methods. Normal human tissue specimens (n = 70) were collected and divided into equal parts for fixation either with formalin or PAXgene. Sections of the obtained paraffin-embedded tissue were cut and stained. Morphological aspects of PAXgene-fixed tissue were described and also scored relative to formalin-fixed tissue. Performance of PAXgene-fixed tissue in immunohistochemical and in situ hybridization assays was also assessed relative to the corresponding formalin-fixed tissues. Morphology of PAXgene-fixed paraffin embedded tissue was well preserved and deemed adequate for diagnostics in most cases. Some antigens in PAXgene-fixed and paraffin embedded sections were detectable without the need for antigen retrieval, while others were detected using standard, formalin fixation based, immunohistochemistry protocols. Comparable results were obtained with in situ hybridization and histochemical stains. Basically all assessed histological techniques were found to be applicable to PAXgene-fixed and paraffin embedded tissue. In general results obtained with PAXgene-fixed tissue are comparable to those of formalin-fixed tissue. Compromises made in morphology can be called minor compared to the advantages in the molecular pathology possibilities
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
- …
