171 research outputs found
Two-fluid magnetic island dynamics in slab geometry: I - Isolated islands
A set of reduced, 2-D, two-fluid, drift-MHD equations is derived. Using these
equations, a complete and fully self-consistent solution is obtained for an
isolated magnetic island propagating through a slab plasma with uniform but
different ion and electron fluid velocities. The ion and electron fluid flow
profiles around the island are uniquely determined, and are everywhere
continuous. Moreover, the island phase-velocity is uniquely specified by the
condition that there be zero net electromagnetic force acting on the island.
Finally, the ion polarization current correction to the Rutherford island width
evolution equation is evaluated, and found to be stabilizing provided that the
anomalous perpendicular ion viscosity significantly exceeds the anomalous
perpendicular electron viscosity
Effective Lagrangians for physical degrees of freedom in the Randall-Sundrum model
We derive the second variation Lagrangian of the Randall-Sundrum model with
two branes, study its gauge invariance and diagonalize it in the unitary gauge.
We also show that the effective four-dimensional theory looks different on
different branes and calculate the observable mass spectra and the couplings of
the physical degrees of freedom of 5-dimensional gravity to matter.Comment: 22 pages, LaTeX, typos correcte
Linearized gravity on the Randall-Sundrum two-brane background with curvature terms in the action for the branes
We study gravitational perturbations in the Randall-Sundrum two-brane
background with scalar-curvature terms in the action for the branes, allowing
for positive as well as negative bulk gravitational constant. In the zero-mode
approximation, we derive the linearized gravitational equations, which have the
same form as in the original Randall-Sundrum model but with different
expressions for the effective physical constants. We develop a generic method
for finding tachyonic modes in the theory, which, in the model under
consideration, may exist only if the bulk gravitational constant is negative.
In this case, if both brane gravitational constants are nonzero, the theory
contains one or two tachyonic mass eigenvalues in the gravitational sector. If
one of the brane gravitational constants is set to zero, then either a single
tachyonic mass eigenvalue is present or tachyonic modes are totally absent
depending on the relation between the nonzero brane gravitational constant and
brane separation. In the case of negative bulk gravitational constant, the
massive gravitational modes have ghost-like character, while the massless
gravitational mode is not a ghost in the case where tachyons are absent.Comment: 23 pages, revtex, published versio
Low-energy gluon contributions to the vacuum polarization of heavy quarks
We calculate a correction to the electromagnetic current induced by a heavy
quark loop. The contribution of this correction to the vacuum polarization
function appears at the O(alpha_s^3) order of perturbation theory and has a
qualitatively new feature -- its absorptive part starts at zero energy in
contrast to other contributions where the absorptive parts start at the
two-particle threshold. Our result imposes a constraint on the order n of the
moments used in the heavy-quark sum rules, n<4.Comment: 8 pages in LaTeX, 1 PostScript figure included in the tex
Braneworlds in six dimensions: new models with bulk scalars
Six dimensional bulk spacetimes with 3-- and 4--branes are constructed using
certain non--conventional bulk scalars as sources. In particular, we
investigate the consequences of having the phantom (negative kinetic energy)
and the Brans--Dicke scalar in the bulk while obtaining such solutions. We find
geometries with 4--branes with a compact on--brane dimension (hybrid
compactification) which may be assumed to be small in order to realize a
3--brane world. On the other hand, we also construct, with similar sources,
bulk spacetimes where a 3--brane is located at a conical singularity.
Furthermore, we investigate the issue of localization of matter fields (scalar,
fermion, graviton, vector) on these 3-- and 4--branes and conclude with
comments on our six dimensional models.Comment: 24 pages, 1 figure, Replaced to match version published in Class.
Quant. Gra
Brane world corrections to Newton's law
We discuss possible variations of the effective gravitational constant with
length scale, predicted by most of alternative theories of gravity and unified
models of physical interactions. After a brief general exposition, we review in
more detail the predicted corrections to Newton's law of gravity in diverse
brane world models. We consider various configurations in 5 dimensions (flat,
de Sitter and AdS branes in Einstein and Einstein-Gauss-Bonnet theories, with
and without induced gravity and possible incomplete graviton localization), 5D
multi-brane systems and some models in higher dimensions. A common feature of
all models considered is the existence of corrections to Newton's law at small
radii comparable with the bulk characteristic length: at such radii, gravity on
the brane becomes effectively multidimensional. Many models contain superlight
perturbation modes, which modify gravity at large scale and may be important
for astrophysics and cosmology.Comment: Brief review, 16 pages, 92 references. Some description and
references adde
Synergetic effects of collisions, turbulence and sawtooth crashes on impurity transport
This paper investigates the interplay of neoclassical, turbulent and MHD processes, which are simultaneously at play when contributing to impurity transport. It is shown that these contributions are not additive, as assumed sometimes. The interaction between turbulence and neoclassical effects leads to less effective thermal screening, i.e. lowers the outward flux due to temperature gradient. This behavior is attributed to poloidal asymmetries of the flow driven by turbulence. Moreover sawtooth crashes play an important role to determine fluxes across the q = 1 surface. It is found that the density profile of a heavy impurity differs significantly in sawtoothing plasmas from the one predicted by neoclassical theory when neglecting MHD events. Sawtooth crashes impede impurity accumulation, but also weaken the impurity outflux due to the temperature gradient when the latter is dominant
Understanding the effect of sheared flow on microinstabilities
The competition between the drive and stabilization of plasma
microinstabilities by sheared flow is investigated, focusing on the ion
temperature gradient mode. Using a twisting mode representation in sheared slab
geometry, the characteristic equations have been formulated for a dissipative
fluid model, developed rigorously from the gyrokinetic equation. They clearly
show that perpendicular flow shear convects perturbations along the field at a
speed we denote by (where is the sound speed), whilst parallel
flow shear enters as an instability driving term analogous to the usual
temperature and density gradient effects. For sufficiently strong perpendicular
flow shear, , the propagation of the system characteristics is
unidirectional and no unstable eigenmodes may form. Perturbations are swept
along the field, to be ultimately dissipated as they are sheared ever more
strongly. Numerical studies of the equations also reveal the existence of
stable regions when , where the driving terms conflict. However, in both
cases transitory perturbations exist, which could attain substantial amplitudes
before decaying. Indeed, for , they are shown to exponentiate
times. This may provide a subcritical route to turbulence in
tokamaks.Comment: minor revisions; accepted to PPC
A renormalizable SO(10) GUT scenario with spontaneous CP violation
We consider fermion masses and mixings in a renormalizable SUSY SO(10) GUT
with Yukawa couplings of scalar fields in the representation 10 + 120 + 126
bar. We investigate a scenario defined by the following assumptions: i) A
single large scale in the theory, the GUT scale. ii) Small neutrino masses
generated by the type I seesaw mechanism with negligible type II contributions.
iii) A suitable form of spontaneous CP breaking which induces hermitian mass
matrices for all fermion mass terms of the Dirac type. Our assumptions define
an 18-parameter scenario for the fermion mass matrices for 18 experimentally
known observables. Performing a numerical analysis, we find excellent fits to
all observables in the case of both the normal and inverted neutrino mass
spectrum.Comment: 16 pages, two eps figure
Brane-bulk energy exchange : a model with the present universe as a global attractor
The role of brane-bulk energy exchange and of an induced gravity term on a
single braneworld of negative tension and vanishing effective cosmological
constant is studied. It is shown that for the physically interesting cases of
dust and radiation a unique global attractor which can realize our present
universe (accelerating and 0<Omega_{m0}<1) exists for a wide range of the
parameters of the model. For Omega_{m0}=0.3, independently of the other
parameters, the model predicts that the equation of state for the dark energy
today is w_{DE,0}=-1.4, while Omega_{m0}=0.03 leads to w_{DE,0}=-1.03. In
addition, during its evolution, w_{DE} crosses the w_{DE}=-1 line to smaller
values.Comment: 8 pages, 2 figures, RevTex; references added, to appear in JHE
- …
