4,269 research outputs found
A Separable Model for Dynamic Networks
Models of dynamic networks --- networks that evolve over time --- have
manifold applications. We develop a discrete-time generative model for social
network evolution that inherits the richness and flexibility of the class of
exponential-family random graph models. The model --- a Separable Temporal ERGM
(STERGM) --- facilitates separable modeling of the tie duration distributions
and the structural dynamics of tie formation. We develop likelihood-based
inference for the model, and provide computational algorithms for maximum
likelihood estimation. We illustrate the interpretability of the model in
analyzing a longitudinal network of friendship ties within a school.Comment: 28 pages (including a 4-page appendix); a substantial rewrite, with
many corrections, changes in terminology, and a different analysis for the
exampl
Recommended from our members
Stromal control of oncogenic traits expressed in response to the overexpression of GLI2, a pleiotropic oncogene.
Hedgehog signaling is often activated in tumors, yet it remains unclear how GLI2, a transcription factor activated by this pathway, acts as an oncogene. We show that GLI2 is a pleiotropic oncogene. The overexpression induces genomic instability and blocks differentiation, likely mediated in part by enhanced expression of the stem cell gene SOX2. GLI2 also induces transforming growth factor (TGF)B1-dependent transdifferentiation of foreskin and tongue, but not gingival fibroblasts into myofibroblasts, creating an environment permissive for invasion by keratinocytes, which are in various stages of differentiation having downregulated GLI2. Thus, upregulated GLI2 expression is sufficient to induce a number of the acquired characteristics of tumor cells; however, the stroma, in a tissue-specific manner, determines whether certain GLI2 oncogenic traits are expressed
Competing periodicities in fractionally filled one-dimensional bands
We present a variable temperature Scanning Tunneling Microscopy and
Spectroscopy (STM and STS) study of the Si(553)-Au atomic chain reconstruction.
This quasi one-dimensional (1D) system undergoes at least two charge density
wave (CDW) transitions at low temperature, which can be attributed to
electronic instabilities in the fractionally-filled 1D bands of the
high-symmetry phase. Upon cooling, Si(553)-Au first undergoes a single-band
Peierls distortion, resulting in period doubling along the imaged chains. This
Peierls state is ultimately overcome by a competing tripleperiod CDW, which in
turn is accompanied by a x2 periodicity in between the chains. These locked-in
periodicities indicate small charge transfer between the nearly half-filled and
quarter-filled 1D bands. The presence and the mobility of atomic scale
dislocations in the x3 CDW state indicates the possibility of manipulating
phase solitons carrying a (spin,charge) of (1/2,+-e/3) or (0,+-2e/3).Comment: submitted, accepted for publication in Phys. Rev. Let
Formation of atom wires on vicinal silicon
The formation of atomic wires via pseudomorphic step-edge decoration on
vicinal silicon surfaces has been analyzed for Ga on the Si(112) surface using
Scanning Tunneling Microscopy and Density Functional Theory calculations. Based
on a chemical potential analysis involving more than thirty candidate
structures and considering various fabrication procedures, it is concluded that
pseudomorphic growth on stepped Si(112), both under equilibrium and
non-equilibrium conditions, must favor formation of Ga zig-zag chains rather
than linear atom chains. The surface is non-metallic and presents quasi-one
dimensional character in the lowest conduction band.Comment: submitte
IUE observations of Fe 2 galaxies
Repeated observations of the Seyfert 1 galaxies I Zw 1 and II Zw 136, which have very strong Fe II emission lines in the optical region, were made at low resolution with the IUE Satellite. The ultraviolet spectra are very similar: both are variable and show broad emission features of Fe II (especially the UV multiplets 1, 33, 60, 62, and 63) as well as the emission lines usually strong in Seyferts and quasars. The data strongly support the hypothesis that the optical Fe II emission lines are primarily due to collisional excitation and that resonance fluorescence makes only a minor contribution to the excitation of these lines
Ga-induced atom wire formation and passivation of stepped Si(112)
We present an in-depth analysis of the atomic and electronic structure of the
quasi one-dimensional (1D) surface reconstruction of Ga on Si(112) based on
Scanning Tunneling Microscopy and Spectroscopy (STM and STS), Rutherford
Backscattering Spectrometry (RBS) and Density Functional Theory (DFT)
calculations. A new structural model of the Si(112)6 x 1-Ga surface is
inferred. It consists of Ga zig-zag chains that are intersected by
quasi-periodic vacancy lines or misfit dislocations. The experimentally
observed meandering of the vacancy lines is caused by the co-existence of
competing 6 x 1 and 5 x 1 unit cells and by the orientational disorder of
symmetry breaking Si-Ga dimers inside the vacancy lines. The Ga atoms are fully
coordinated, and the surface is chemically passivated. STS data reveal a
semiconducting surface and show excellent agreement with calculated Local
Density of States (LDOS) and STS curves. The energy gain obtained by fully
passivating the surface calls the idea of step-edge decoration as a viable
growth method toward 1D metallic structures into question.Comment: Submitted, 13 pages, accepted in Phys. Rev. B, notational change in
Fig.
Trust and privacy in distributed work groups
Proceedings of the 2nd International Workshop on Social Computing, Behavioral Modeling and PredictionTrust plays an important role in both group cooperation and economic exchange. As new technologies emerge for communication and exchange, established mechanisms of trust are disrupted or distorted, which can lead to the breakdown of cooperation or to increasing fraud in exchange. This paper examines whether and how personal privacy information about members of distributed work groups influences individuals' cooperation and privacy behavior in the group. Specifically, we examine whether people use others' privacy settings as signals of trustworthiness that affect group cooperation. In addition, we examine how individual privacy preferences relate to trustworthy behavior. Understanding how people interact with others in online settings, in particular when they have limited information, has important implications for geographically distributed groups enabled through new information technologies. In addition, understanding how people might use information gleaned from technology usage, such as personal privacy settings, particularly in the absence of other information, has implications for understanding many potential situations that arise in pervasively networked environments.Preprin
Topological network alignment uncovers biological function and phylogeny
Sequence comparison and alignment has had an enormous impact on our
understanding of evolution, biology, and disease. Comparison and alignment of
biological networks will likely have a similar impact. Existing network
alignments use information external to the networks, such as sequence, because
no good algorithm for purely topological alignment has yet been devised. In
this paper, we present a novel algorithm based solely on network topology, that
can be used to align any two networks. We apply it to biological networks to
produce by far the most complete topological alignments of biological networks
to date. We demonstrate that both species phylogeny and detailed biological
function of individual proteins can be extracted from our alignments.
Topology-based alignments have the potential to provide a completely new,
independent source of phylogenetic information. Our alignment of the
protein-protein interaction networks of two very different species--yeast and
human--indicate that even distant species share a surprising amount of network
topology with each other, suggesting broad similarities in internal cellular
wiring across all life on Earth.Comment: Algorithm explained in more details. Additional analysis adde
Resolved Spectroscopy of the Narrow-Line Region in NGC 1068. I. The Nature of the Continuum Emission
We present the first long-slit spectra of the Seyfert 2 galaxy NGC 1068
obtained by the Space Telescope Imaging Spectrograph (STIS); the spectra cover
the wavelength range 1150 - 10,270 Angstroms at a spatial resolution of 0.05 -
0.1 arcsec and a spectral resolving power of 1000. In this first paper, we
concentrate on the far-UV to near-IR continuum emission from the continuum
``hot spot'' and surrounding regions extending out to +/- 6 arcsec (+/-432 pc)
at a position angle of 202 degrees In addition to the broad emission lines
detected by spectropolarimetry, the hot spot shows the ``little blue bump'' in
the 2000 - 4000 Ang. range, which is due to Fe II and Balmer continuum
emission. The continuum shape of the hot spot is indistinguishable from that of
NGC 4151 and other Seyfert 1 galaxies. Thus, the hot spot is reflected emission
from the hidden nucleus, due to electron scattering (as opposed to
wavelength-dependent dust scattering). The hot spot is ~0.3 arcsec in extent
and accounts for 20% of the scattered light in the inner 500 pc. We are able to
deconvolve the extended continuum emission in this region into two components:
electron-scattered light from the hidden nucleus (which dominates in the UV)
and stellar light (which dominates in the optical and near-IR). The scattered
light is heavily concentrated towards the hot spot, is stronger in the
northeast, and is enhanced in regions of strong narrow-line emission. The
stellar component is more extended, concentrated southwest of the hot spot,
dominated by an old (> 2 x 10 Gyr) stellar population, and includes a nuclear
stellar cluster which is ~200 pc in extent.Comment: 32 pages, Latex, includes 11 figures (postscript), to appear in the
Astrophysical Journa
- …
