3,133 research outputs found
Safety-Aware Apprenticeship Learning
Apprenticeship learning (AL) is a kind of Learning from Demonstration
techniques where the reward function of a Markov Decision Process (MDP) is
unknown to the learning agent and the agent has to derive a good policy by
observing an expert's demonstrations. In this paper, we study the problem of
how to make AL algorithms inherently safe while still meeting its learning
objective. We consider a setting where the unknown reward function is assumed
to be a linear combination of a set of state features, and the safety property
is specified in Probabilistic Computation Tree Logic (PCTL). By embedding
probabilistic model checking inside AL, we propose a novel
counterexample-guided approach that can ensure safety while retaining
performance of the learnt policy. We demonstrate the effectiveness of our
approach on several challenging AL scenarios where safety is essential.Comment: Accepted by International Conference on Computer Aided Verification
(CAV) 201
Partial replay of long-running applications
Bugs in deployed software can be extremely difficult to track down. Invasive logging techniques, such as logging all non-deterministic inputs, can incur substantial runtime overheads. This paper shows how symbolic analysis can be used to re-create path equivalent executions for very long running programs such as databases and web servers. The goal is to help developers debug such long-running programs by allowing them to walk through an execution of the last few requests or transactions leading up to an error. The challenge is to provide this functionality without the high runtime overheads associated with traditional replay techniques based on input logging or memory snapshots. Our approach achieves this by recording a small amount of information about program execution, such as the direction of branches taken, and then using symbolic analysis to reconstruct the execution of the last few inputs processed by the application, as well as the state of memory before these inputs were executed.
We implemented our technique in a new tool called bbr. In this paper, we show that it can be used to replay bugs in long-running single-threaded programs starting from the middle of an execution. We show that bbr incurs low recording overhead (avg. of 10%) during program execution, which is much less than existing replay schemes. We also show that it can reproduce real bugs from web servers, database systems, and other common utilities
SAT-Based Synthesis Methods for Safety Specs
Automatic synthesis of hardware components from declarative specifications is
an ambitious endeavor in computer aided design. Existing synthesis algorithms
are often implemented with Binary Decision Diagrams (BDDs), inheriting their
scalability limitations. Instead of BDDs, we propose several new methods to
synthesize finite-state systems from safety specifications using decision
procedures for the satisfiability of quantified and unquantified Boolean
formulas (SAT-, QBF- and EPR-solvers). The presented approaches are based on
computational learning, templates, or reduction to first-order logic. We also
present an efficient parallelization, and optimizations to utilize reachability
information and incremental solving. Finally, we compare all methods in an
extensive case study. Our new methods outperform BDDs and other existing work
on some classes of benchmarks, and our parallelization achieves a super-linear
speedup. This is an extended version of [5], featuring an additional appendix.Comment: Extended version of a paper at VMCAI'1
Temporal Stream Logic: Synthesis beyond the Bools
Reactive systems that operate in environments with complex data, such as
mobile apps or embedded controllers with many sensors, are difficult to
synthesize. Synthesis tools usually fail for such systems because the state
space resulting from the discretization of the data is too large. We introduce
TSL, a new temporal logic that separates control and data. We provide a
CEGAR-based synthesis approach for the construction of implementations that are
guaranteed to satisfy a TSL specification for all possible instantiations of
the data processing functions. TSL provides an attractive trade-off for
synthesis. On the one hand, synthesis from TSL, unlike synthesis from standard
temporal logics, is undecidable in general. On the other hand, however,
synthesis from TSL is scalable, because it is independent of the complexity of
the handled data. Among other benchmarks, we have successfully synthesized a
music player Android app and a controller for an autonomous vehicle in the Open
Race Car Simulator (TORCS.
Learning Moore Machines from Input-Output Traces
The problem of learning automata from example traces (but no equivalence or
membership queries) is fundamental in automata learning theory and practice. In
this paper we study this problem for finite state machines with inputs and
outputs, and in particular for Moore machines. We develop three algorithms for
solving this problem: (1) the PTAP algorithm, which transforms a set of
input-output traces into an incomplete Moore machine and then completes the
machine with self-loops; (2) the PRPNI algorithm, which uses the well-known
RPNI algorithm for automata learning to learn a product of automata encoding a
Moore machine; and (3) the MooreMI algorithm, which directly learns a Moore
machine using PTAP extended with state merging. We prove that MooreMI has the
fundamental identification in the limit property. We also compare the
algorithms experimentally in terms of the size of the learned machine and
several notions of accuracy, introduced in this paper. Finally, we compare with
OSTIA, an algorithm that learns a more general class of transducers, and find
that OSTIA generally does not learn a Moore machine, even when fed with a
characteristic sample
Abstract Learning Frameworks for Synthesis
We develop abstract learning frameworks (ALFs) for synthesis that embody the
principles of CEGIS (counter-example based inductive synthesis) strategies that
have become widely applicable in recent years. Our framework defines a general
abstract framework of iterative learning, based on a hypothesis space that
captures the synthesized objects, a sample space that forms the space on which
induction is performed, and a concept space that abstractly defines the
semantics of the learning process. We show that a variety of synthesis
algorithms in current literature can be embedded in this general framework.
While studying these embeddings, we also generalize some of the synthesis
problems these instances are of, resulting in new ways of looking at synthesis
problems using learning. We also investigate convergence issues for the general
framework, and exhibit three recipes for convergence in finite time. The first
two recipes generalize current techniques for convergence used by existing
synthesis engines. The third technique is a more involved technique of which we
know of no existing instantiation, and we instantiate it to concrete synthesis
problems
Sociobiological Control of Plasmid copy number
Background:
All known mechanisms and genes responsible for the regulation of plasmid replication lie with the plasmid rather than the chromosome. It is possible therefore that there can be copy-up mutants. Copy-up mutants will have within host selective advantage. This would eventually result into instability of bacteria-plasmid association. In spite of this possibility low copy number plasmids appear to exist stably in host populations. We examined this paradox using a computer simulation model.

Model:
Our multilevel selection model assumes a wild type with tightly regulated replication to ensure low copy number. A mutant with slightly relaxed replication regulation can act as a “cheater” or “selfish” plasmid and can enjoy a greater within-host-fitness. However the host of a cheater plasmid has to pay a greater cost. As a result, in host level competition, host cell with low copy number plasmid has a greater fitness. Furthermore, another mutant that has lost the genes required for conjugation was introduced in the model. The non-conjugal mutant was assumed to undergo conjugal transfer in the presence of another conjugal plasmid in the host cell.

Results:
The simulatons showed that if the cost of carrying a plasmid was low, the copy-up mutant could drive the wild type to extinction or very low frequencies. Consequently, another mutant with a higher copy number could invade the first invader. This process could result into an increasing copy number. However above a certain copy number within-host selection was overcompensated by host level selection leading to a rock-paper-scissor (RPS) like situation. The RPS situation allowed the coexistence of high and low copy number plasmids. The non-conjugal “hypercheaters” could further arrest the copy numbers to a substantially lower level.

Conclusions:
These sociobiological interactions might explain the stability of copy numbers better than molecular mechanisms of replication regulation alone
Thermal simulation software outputs: a conceptual data model of information presentation for building design decision-making
Building simulation outputs are inherently complex and numerous. Extracting meaningful information from them requires knowledge which mainly resides only in the hands of experts. Initiatives to address this problem tend either to provide very constrained output data interfaces or leave it to the user to customize data organisation and query. This work proposes a conceptual data model from which meaningful dynamic thermal simulation information for building design decision-making may be constructed and presented to the user. It describes how the model was generated and can become operational, with examples of its applications to practical problems. The paper therefore contains useful information for software developers to help in specifying and designing simulation outputs which better respond to building designers’ needs
- …
