3,732 research outputs found
Signatures of impulsive localized heating in the temperature distribution of multi-stranded coronal loops
We study the signatures of different coronal heating regimes on the
differential emission measure (DEM) of multi-stranded coronal loops by means of
hydrodynamic simulations. We consider heating either uniformly distributed
along the loops or localized close to the chromospheric footpoints, in both
steady and impulsive conditions. Our simulations show that condensation at the
top of the loop forms when the localized heating is impulsive with a pulse
cadence time shorter than the plasma cooling time, and the pulse energy is
below a certain threshold. A condensation does not produce observable
signatures in the global DEM structure. Conversely, the DEM coronal peak is
found sensitive to the pulse cadence time. Our simulations can also give an
explanation of the warm overdense and hot underdense loops observed by TRACE,
SOHO and Yohkoh. However, they are unable to reproduce both the transition
region and the coronal DEM structure with a unique set of parameters, which
outlines the need for a more realistic description of the transition region.Comment: 31 pages, 7 figure
Velocity measurements for a solar active region fan loop from Hinode/EIS observations
The velocity pattern of a fan loop structure within a solar active region
over the temperature range 0.15-1.5 MK is derived using data from the EUV
Imaging Spectrometer (EIS) on board the Hinode satellite. The loop is aligned
towards the observer's line-of-sight and shows downflows (redshifts) of around
15 km/s up to a temperature of 0.8 MK, but for temperatures of 1.0 MK and above
the measured velocity shifts are consistent with no net flow. This velocity
result applies over a projected spatial distance of 9 Mm and demonstrates that
the cooler, redshifted plasma is physically disconnected from the hotter,
stationary plasma. A scenario in which the fan loops consist of at least two
groups of "strands" - one cooler and downflowing, the other hotter and
stationary -- is suggested. The cooler strands may represent a later
evolutionary stage of the hotter strands. A density diagnostic of Mg VII was
used to show that the electron density at around 0.8 MK falls from 3.2 x 10^9
cm^-3 at the loop base, to 5.0 x 10^8 cm^-3 at a projected height of 15 Mm. A
filling factor of 0.2 is found at temperatures close to the formation
temperature of Mg VII (0.8 MK), confirming that the cooler, downflowing plasma
occupies only a fraction of the apparent loop volume. The fan loop is rooted
within a so-called "outflow region" that displays low intensity and blueshifts
of up to 25 km/s in Fe XII 195.12 A (formed at 1.5 MK), in contrast to the
loop's redshifts of 15 km/s at 0.8 MK. A new technique for obtaining an
absolute wavelength calibration for the EIS instrument is presented and an
instrumental effect, possibly related to a distorted point spread function,
that affects velocity measurements is identified.Comment: 42 pages, 15 figures, submitted to Ap
A prototype large-angle photon veto detector for the P326 experiment at CERN
The P326 experiment at the CERN SPS has been proposed with the purpose of
measuring the branching ratio for the decay K^+ \to \pi^+ \nu \bar{\nu} to
within 10%. The photon veto system must provide a rejection factor of 10^8 for
\pi^0 decays. We have explored two designs for the large-angle veto detectors,
one based on scintillating tiles and the other using scintillating fibers. We
have constructed a prototype module based on the fiber solution and evaluated
its performance using low-energy electron beams from the Frascati Beam-Test
Facility. For comparison, we have also tested a tile prototype constructed for
the CKM experiment, as well as lead-glass modules from the OPAL electromagnetic
barrel calorimeter. We present results on the linearity, energy resolution, and
time resolution obtained with the fiber prototype, and compare the detection
efficiency for electrons obtained with all three instruments.Comment: 8 pages, 9 figures, 2 tables. Presented at the 2007 IEEE Nuclear
Science Symposium, Honolulu HI, USA, 28 October - 3 November 200
Innate immune modulation by GM-CSF and IL-3 in health and disease
Granulocyte-macrophage colony-stimulating factor (GM-CSF) and inteleukin-3 (IL-3) have long been known as mediators of emergency myelopoiesis, but recent evidence has highlighted their critical role in modulating innate immune effector functions in mice and humans. This new wealth of knowledge has uncovered novel aspects of the pathogenesis of a range of disorders, including infectious, neoplastic, autoimmune, allergic and cardiovascular diseases. Consequently, GM-CSF and IL-3 are now being investigated as therapeutic targets for some of these disorders, and some phase I/II clinical trials are already showing promising results. There is also pre-clinical and clinical evidence that GM-CSF can be an effective immunostimulatory agent when being combined with anti-cytotoxic T lymphocyte-associated protein 4 (anti-CTLA-4) in patients with metastatic melanoma as well as in novel cancer immunotherapy approaches. Finally, GM-CSF and to a lesser extent IL-3 play a critical role in experimental models of trained immunity by acting not only on bone marrow precursors but also directly on mature myeloid cells. Altogether, characterizing GM-CSF and IL-3 as central mediators of innate immune activation is poised to open new therapeutic avenues for several immune-mediated disorders and define their potential in the context of immunotherapies
Evidence for Steady Heating: Observations of an Active Region Core with Hinode and TRACE
Previous observations have not been able to exclude the possibility that high
temperature active region loops are actually composed of many small scale
threads that are in various stages of heating and cooling and only appear to be
in equilibrium. With new observations from the EUV Imaging Spectrometer (EIS)
and X-ray Telescope (XRT) on \textit{Hinode} we have the ability to investigate
the properties of high temperature coronal plasma in extraordinary detail. We
examine the emission in the core of an active region and find three independent
lines of evidence for steady heating. We find that the emission observed in XRT
is generally steady for hours, with a fluctuation level of approximately 15% in
an individual pixel. Short-lived impulsive heating events are observed, but
they appear to be unrelated to the steady emission that dominates the active
region. Furthermore, we find no evidence for warm emission that is spatially
correlated with the hot emission, as would be expected if the high temperature
loops are the result of impulsive heating. Finally, we also find that
intensities in the "moss", the footpoints of high temperature loops, are
consistent with steady heating models provided that we account for the local
expansion of the loop from the base of the transition region to the corona. In
combination, these results provide strong evidence that the heating in the core
of an active region is effectively steady, that is, the time between heating
events is short relative to the relevant radiative and conductive cooling
times.Comment: Minor changes based on the final report from the referee; Movies are
available from the first autho
Regularity of higher codimension area minimizing integral currents
This lecture notes are an expanded version of the course given at the
ERC-School on Geometric Measure Theory and Real Analysis, held in Pisa,
September 30th - October 30th 2013. The lectures aim to explain the main steps
of a new proof of the partial regularity of area minimizing integer rectifiable
currents in higher codimension, due originally to F. Almgren, which is
contained in a series of papers in collaboration with C. De Lellis (University
of Zurich).Comment: This text will appear in "Geometric Measure Theory and Real
Analysis", pp. 131--192, Proceedings of the ERC school in Pisa (2013), L.
Ambrosio Ed., Edizioni SNS (CRM Series
Comparing extrapolations of the coronal magnetic field structure at 2.5 solar radii with multi-viewpoint coronagraphic observations
The magnetic field shapes the structure of the solar corona but we still know
little about the interrelationships between the coronal magnetic field
configurations and the resulting quasi-stationary structures observed in
coronagraphic images (as streamers, plumes, coronal holes). One way to obtain
information on the large-scale structure of the coronal magnetic field is to
extrapolate it from photospheric data and compare the results with
coronagraphic images. Our aim is to verify if this comparison can be a fast
method to check systematically the reliability of the many methods available to
reconstruct the coronal magnetic field. Coronal fields are usually extrapolated
from photospheric measurements typically in a region close to the central
meridian on the solar disk and then compared with coronagraphic images at the
limbs, acquired at least 7 days before or after to account for solar rotation,
implicitly assuming that no significant changes occurred in the corona during
that period. In this work, we combine images from three coronagraphs
(SOHO/LASCO-C2 and the two STEREO/SECCHI-COR1) observing the Sun from different
viewing angles to build Carrington maps covering the entire corona to reduce
the effect of temporal evolution to ~ 5 days. We then compare the position of
the observed streamers in these Carrington maps with that of the neutral lines
obtained from four different magnetic field extrapolations, to evaluate the
performances of the latter in the solar corona. Our results show that the
location of coronal streamers can provide important indications to discriminate
between different magnetic field extrapolations.Comment: Accepted by A&A the 20th of May, 201
Searches for Physics Beyond the Standard Model at Colliders
All experimental measurements of particle physics today are beautifully
described by the Standard Model. However, there are good reasons to believe
that new physics may be just around the corner at the TeV energy scale. This
energy range is currently probed by the Tevatron and HERA accelerators and
selected results of searches for physics beyond the Standard Model are
presented here. No signals for new physics have been found and limits are
placed on the allowed parameter space for a variety of different particles.Comment: Proceedings for 2007 Europhysics Conference on High Energy Physics,
Manchester, July 200
Search for photospheric footpoints of quiet Sun transition region loops
CONTEXT:The footpoints of quiet Sun Transition Region (TR) loops do not seem
to coincide with the photospheric magnetic structures appearing in traditional
low-sensitivity magnetograms.
AIMS: To look for the so-far unidentified photospheric footpoints of TR loops
using G-band bright points (BPs) as proxies for photospheric magnetic field
concentrations.
METHODS: Comparison of TR measurements with SoHO/SUMER and photospheric
magnetic field observations obtained with the Dutch Open Telescope.
RESULTS: Photospheric BPs are associated with bright TR structures, but they
seem to avoid the brightest parts of the structure. BPs appear in regions that
are globally redshifted, but they avoid extreme velocities. TR explosive events
are not clearly associated with BPs.
CONCLUSIONS: The observations are not inconsistent with the BPs being
footpoints of TR loops, although we have not succeeded to uniquely identify
particular BPs with specific TR loops.Comment: Accepted for publication in A&A. 10 pages, 10 figures. Due to size
limitations, the quality of fig3 is not goo
A global fit to determine the pseudoscalar mixing angle and the gluonium content of the eta' meson
We update the values of the eta-eta' mixing angle and of the eta' gluonium
content by fitting our measurement R_phi = BR(phi to eta' gamma)/ BR(phi to eta
gamma) together with several vector meson radiative decays to pseudoscalars (V
to P gamma), pseudoscalar mesons radiative decays to vectors (P to V gamma) and
the eta' to gamma gamma, pi^0 to gamma gamma widths. From the fit we extract a
gluonium fraction of Z^2_G = 0.12 +- 0.04, the pseudoscalar mixing angle psi_P
= (40.4 +- 0.6) degree and the phi-omega mixing angle psi_V = (3.32 +- 0.09)
degree. Z^2_G and psi_P are fairly consistent with those previously published.
We also evaluate the impact on the eta' gluonium content determination of
future experimental improvements of the eta' branching ratios and decay width.Comment: 13 pages, 7 figures to submit to JHE
- …
