159 research outputs found
Theoretical model for ultracold molecule formation via adaptive feedback control
We investigate pump-dump photoassociation of ultracold molecules with
amplitude- and phase-modulated femtosecond laser pulses. For this purpose a
perturbative model for the light-matter interaction is developed and combined
with a genetic algorithm for adaptive feedback control of the laser pulse
shapes. The model is applied to the formation of 85Rb2 molecules in a
magneto-optical trap. We find for optimized pulse shapes an improvement for the
formation of ground state molecules by more than a factor of 10 compared to
unshaped pulses at the same pump-dump delay time, and by 40% compared to
unshaped pulses at the respective optimal pump-dump delay time. Since our model
yields directly the spectral amplitudes and phases of the optimized pulses, the
results are directly applicable in pulse shaping experiments
Structure and properties of small sodium clusters
We have investigated structure and properties of small metal clusters using
all-electron ab initio theoretical methods based on the Hartree-Fock
approximation and density functional theory, perturbation theory and compared
results of our calculations with the available experimental data and the
results of other theoretical works. We have systematically calculated the
optimized geometries of neutral and singly charged sodium clusters having up to
20 atoms, their multipole moments (dipole and quadrupole), static
polarizabilities, binding energies per atom, ionization potentials and
frequencies of normal vibration modes. Our calculations demonstrate the great
role of many-electron correlations in the formation of electronic and ionic
structure of small metal clusters and form a good basis for further detailed
study of their dynamic properties, as well as structure and properties of other
atomic cluster systems.Comment: 47 pages, 16 figure
Nucleation of a sodium droplet on C60
We investigate theoretically the progressive coating of C60 by several sodium
atoms. Density functional calculations using a nonlocal functional are
performed for NaC60 and Na2C60 in various configurations. These data are used
to construct an empirical atomistic model in order to treat larger sizes in a
statistical and dynamical context. Fluctuating charges are incorporated to
account for charge transfer between sodium and carbon atoms. By performing
systematic global optimization in the size range 1<=n<=30, we find that Na_nC60
is homogeneously coated at small sizes, and that a growing droplet is formed
above n=>8. The separate effects of single ionization and thermalization are
also considered, as well as the changes due to a strong external electric
field. The present results are discussed in the light of various experimental
data.Comment: 17 pages, 10 figure
Visual outcome after fractionated stereotactic radiation therapy of benign anterior skull base tumors
To determine visual outcome including the occurrence of radiation induced optic neuropathy (RION) as well as tumor control after fractionated stereotactic radiation therapy (FSRT) of benign anterior skull base meningiomas or pituitary adenomas. Thirty-nine patients treated with FSRT for anterior skull base meningiomas and 55 patients treated with FSRT for pituitary adenomas between January 1999 and December 2009 with at least 2 years follow-up were included. Patients were followed up prospectively with magnetic resonance imaging scans, visual acuity and visual field examinations. RION was found in four (10 %) patients with anterior skull base meningiomas and seven patients (13 %) with pituitary adenomas. The five-year actuarial freedom from 25 % RION visual field loss was 94 % following FSRT. Actuarial 2-, 5- and 10-year tumor control rates were 100, 88.4 and 64.5 % for anterior skull base meningiomas and 100, 98.2 and 94.9 % for pituitary adenomas, respectively. Patients with an impaired visual field function pre-FSRT were more likely to experience worsened function (p = 0.016). We found that RION, was a relatively uncommon event, in a large prospective cohort of patients that were systematically monitored following FSRT of benign anterior skull base tumors. Long term tumor control was favorable, especially for pituitary adenomas
Ab initio studies of structures and properties of small potassium clusters
We have studied the structure and properties of potassium clusters containing
even number of atoms ranging from 2 to 20 at the ab initio level. The geometry
optimization calculations are performed using all-electron density functional
theory with gradient corrected exchange-correlation functional. Using these
optimized geometries we investigate the evolution of binding energy, ionization
potential, and static polarizability with the increasing size of the clusters.
The polarizabilities are calculated by employing Moller-Plesset perturbation
theory and time dependent density functional theory. The polarizabilities of
dimer and tetramer are also calculated by employing large basis set coupled
cluster theory with single and double excitations and perturbative triple
excitations. The time dependent density functional theory calculations of
polarizabilities are carried out with two different exchange-correlation
potentials: (i) an asymptotically correct model potential and (ii) within the
local density approximation. A systematic comparison with the other available
theoretical and experimental data for various properties of small potassium
clusters mentioned above has been performed. These comparisons reveal that both
the binding energy and the ionization potential obtained with gradient
corrected potential match quite well with the already published data.
Similarly, the polarizabilities obtained with Moller-Plesset perturbation
theory and with model potential are quite close to each other and also close to
experimental data.Comment: 33 pages including 10 figure
Monte-Carlo Geometry Optimization of Sodium Clusters with a Distance-Dependent Monoelectronic Hamiltonian
An ab initio study of the lowest ^1,3\Sigma^+ states of BH. Quasi diabatic curves and vibronic couplings
The electronic 1\Sigma+ states and potential energy curves have been studied with a view to obtaining quasi-diabatic states. The four lowest 1\Sigma+ states as well as the first three 3\Sigma+ have been accurately calculated
- …
