348 research outputs found

    Nonlinear dynamical systems and classical orthogonal polynomials

    Full text link
    It is demonstrated that nonlinear dynamical systems with analytic nonlinearities can be brought down to the abstract Schr\"odinger equation in Hilbert space with boson Hamiltonian. The Fourier coefficients of the expansion of solutions to the Schr\"odinger equation in the particular occupation number representation are expressed by means of the classical orthogonal polynomials. The introduced formalism amounts a generalization of the classical methods for linearization of nonlinear differential equations such as the Carleman embedding technique and Koopman approach.Comment: 21 pages latex, uses revte

    Chaotic saddles in nonlinear modulational interactions in a plasma

    Full text link
    A nonlinear model of modulational processes in the subsonic regime involving a linearly unstable wave and two linearly damped waves with different damping rates in a plasma is studied numerically. We compute the maximum Lyapunov exponent as a function of the damping rates in a two-parameter space, and identify shrimp-shaped self-similar structures in the parameter space. By varying the damping rate of the low-frequency wave, we construct bifurcation diagrams and focus on a saddle-node bifurcation and an interior crisis associated with a periodic window. We detect chaotic saddles and their stable and unstable manifolds, and demonstrate how the connection between two chaotic saddles via coupling unstable periodic orbits can result in a crisis-induced intermittency. The relevance of this work for the understanding of modulational processes observed in plasmas and fluids is discussed.Comment: Physics of Plasmas, in pres

    A Geometrical Method of Decoupling

    Full text link
    The computation of tunes and matched beam distributions are essential steps in the analysis of circular accelerators. If certain symmetries - like midplane symmetrie - are present, then it is possible to treat the betatron motion in the horizontal, the vertical plane and (under certain circumstances) the longitudinal motion separately using the well-known Courant-Snyder theory, or to apply transformations that have been described previously as for instance the method of Teng and Edwards. In a preceeding paper it has been shown that this method requires a modification for the treatment of isochronous cyclotrons with non-negligible space charge forces. Unfortunately the modification was numerically not as stable as desired and it was still unclear, if the extension would work for all thinkable cases. Hence a systematic derivation of a more general treatment seemed advisable. In a second paper the author suggested the use of real Dirac matrices as basic tools to coupled linear optics and gave a straightforward recipe to decouple positive definite Hamiltonians with imaginary eigenvalues. In this article this method is generalized and simplified in order to formulate a straightforward method to decouple Hamiltonian matrices with eigenvalues on the real and the imaginary axis. It is shown that this algebraic decoupling is closely related to a geometric "decoupling" by the orthogonalization of the vectors E\vec E, B\vec B and P\vec P, that were introduced with the so-called "electromechanical equivalence". We present a structure-preserving block-diagonalization of symplectic or Hamiltonian matrices, respectively. When used iteratively, the decoupling algorithm can also be applied to n-dimensional systems and requires O(n2){\cal O}(n^2) iterations to converge to a given precision.Comment: 13 pages, 1 figur

    Comment on the Shiner-Davison-Landsberg Measure

    Get PDF
    The complexity measure from Shiner et al. [Physical Review E 59, 1999, 1459-1464] (henceforth abbreviated as SDL-measure) has recently been the subject of a fierce debate. We discuss the properties and shortcomings of this measure, from the point of view of our recently constructed fundamental, statistical mechanics-based measures of complexity Cs(γ,β) [Stoop et al., J. Stat. Phys. 114, 2004, 1127-1137]. We show explicitly, what the shortcomings of the SDL-measure are: It is over-universal, and the implemented temperature dependence is trivial. We also show how the original SDL-approach can be modified to rule out these points of critique. Results of this modification are shown for the logistic parabol

    Painlev\'{e} test of coupled Gross-Pitaevskii equations

    Full text link
    Painlev\'{e} test of the coupled Gross-Pitaevskii equations has been carried out with the result that the coupled equations pass the P-test only if a special relation containing system parameters (masses, scattering lengths) is satisfied. Computer algebra is applied to evaluate j=4 compatibility condition for admissible external potentials. Appearance of an arbitrary real potential embedded in the external potentials is shown to be the consequence of the coupling. Connection with recent experiments related to stability of two-component Bose-Einstein condensates of Rb atoms is discussed.Comment: 13 pages, no figure

    Function reconstruction as a classical moment problem: A maximum entropy approach

    Full text link
    We present a systematic study of the reconstruction of a non-negative function via maximum entropy approach utilizing the information contained in a finite number of moments of the function. For testing the efficacy of the approach, we reconstruct a set of functions using an iterative entropy optimization scheme, and study the convergence profile as the number of moments is increased. We consider a wide variety of functions that include a distribution with a sharp discontinuity, a rapidly oscillatory function, a distribution with singularities, and finally a distribution with several spikes and fine structure. The last example is important in the context of the determination of the natural density of the logistic map. The convergence of the method is studied by comparing the moments of the approximated functions with the exact ones. Furthermore, by varying the number of moments and iterations, we examine to what extent the features of the functions, such as the divergence behavior at singular points within the interval, is reproduced. The proximity of the reconstructed maximum entropy solution to the exact solution is examined via Kullback-Leibler divergence and variation measures for different number of moments.Comment: 20 pages, 17 figure

    Lyapunov exponent and natural invariant density determination of chaotic maps: An iterative maximum entropy ansatz

    Full text link
    We apply the maximum entropy principle to construct the natural invariant density and Lyapunov exponent of one-dimensional chaotic maps. Using a novel function reconstruction technique that is based on the solution of Hausdorff moment problem via maximizing Shannon entropy, we estimate the invariant density and the Lyapunov exponent of nonlinear maps in one-dimension from a knowledge of finite number of moments. The accuracy and the stability of the algorithm are illustrated by comparing our results to a number of nonlinear maps for which the exact analytical results are available. Furthermore, we also consider a very complex example for which no exact analytical result for invariant density is available. A comparison of our results to those available in the literature is also discussed.Comment: 16 pages including 6 figure

    Chaos and Preheating

    Get PDF
    We show evidence for a relationship between chaos and parametric resonance both in a classical system and in the semiclassical process of particle creation. We apply our considerations in a toy model for preheating after inflation.Comment: 7 pages, 9 figures; uses epsfig and revtex v3.1. Matches version accepted for publication in Phys. Rev.

    The Partition Function and Level Density for Yang-Mills-Higgs Quantum Mechanics

    Get PDF
    We calculate the partition function Z(t)Z(t) and the asymptotic integrated level density N(E)N(E) for Yang-Mills-Higgs Quantum Mechanics for two and three dimensions (n=2,3n = 2, 3). Due to the infinite volume of the phase space Γ\Gamma on energy shell for n=2n= 2, it is not possible to disentangle completely the coupled oscillators (x2y2x^2 y^2-model) from the Higgs sector. The situation is different for n=3n = 3 for which Γ\Gamma is finite. The transition from order to chaos in these systems is expressed by the corresponding transitions in Z(t)Z(t) and N(E)N(E), analogous to the transitions in adjacent level spacing distribution from Poisson distribution to Wigner-Dyson distribution. We also discuss a related system with quartic coupled oscillators and two dimensional quartic free oscillators for which, contrary to YMHQM, both coupling constants are dimensionless.Comment: 10 pages, LaTeX; minor changes; version accepted for publication as a Letter in J. Phys.
    corecore