833 research outputs found

    First evidence of coherent K+K^{+} meson production in neutrino-nucleus scattering

    Get PDF
    Neutrino-induced charged-current coherent kaon production, νμAμK+A\nu_{\mu}A\rightarrow\mu^{-}K^{+}A, is a rare, inelastic electroweak process that brings a K+K^+ on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than neutrino-induced charged-current coherent pion production, because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K+K^+, μ\mu^- and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which is a model-independent characteristic of coherent scattering. We find the first experimental evidence for the process at 3σ3\sigma significance.Comment: added ancillary file with information about the six kaon candidate

    The MINERν\nuA Data Acquisition System and Infrastructure

    Full text link
    MINERν\nuA (Main INjector ExpeRiment ν\nu-A) is a new few-GeV neutrino cross section experiment that began taking data in the FNAL NuMI (Fermi National Accelerator Laboratory Neutrinos at the Main Injector) beam-line in March of 2010. MINERν\nuA employs a fine-grained scintillator detector capable of complete kinematic characterization of neutrino interactions. This paper describes the MINERν\nuA data acquisition system (DAQ) including the read-out electronics, software, and computing architecture.Comment: 34 pages, 16 figure

    Search for the decay KL03γK_L^0 \rightarrow 3\gamma

    Full text link
    We performed a search for the decay KL03γK_L^0 \rightarrow 3\gamma with the E391a detector at KEK. In the data accumulated in 2005, no event was observed in the signal region. Based on the assumption of KL03γK_L^0 \rightarrow 3\gamma proceeding via parity-violation, we obtained the single event sensitivity to be (3.23±0.14)×108(3.23\pm0.14)\times10^{-8}, and set an upper limit on the branching ratio to be 7.4×1087.4\times10^{-8} at the 90% confidence level. This is a factor of 3.2 improvement compared to the previous results. The results of KL03γK_L^0 \rightarrow 3\gamma proceeding via parity-conservation were also presented in this paper

    Study of the K0(L) --> pi0 pi0 nu nu-bar decay

    Full text link
    The rare decay K0(L) --> pi0 pi0 nu nu-bar was studied with the E391a detector at the KEK 12-GeV proton synchrotron. Based on 9.4 x 10^9 K0L decays, an upper limit of 8.1 x 10^{-7} was obtained for the branching fraction at 90% confidence level. We also set a limit on the K0(L) --> pi0 pi0 X (X --> invisible particles) process; the limit on the branching fraction varied from 7.0 x 10^{-7} to 4.0 x 10^{-5} for the mass of X ranging from 50 MeV/c^2 to 200 MeV/c^2.Comment: 5 pages, 5 figure
    corecore