854 research outputs found

    High-Pressure Amorphous Nitrogen

    Full text link
    The phase diagram and stability limits of diatomic solid nitrogen have been explored in a wide pressure--temperature range by several optical spectroscopic techniques. A newly characterized narrow-gap semiconducting phase η\eta has been found to exist in a range of 80--270 GPa and 10--510 K. The vibrational and optical properties of the η\eta phase produced under these conditions indicate that it is largely amorphous and back transforms to a new molecular phase. The band gap of the η\eta phase is found to decrease with pressure indicating possible metallization by band overlap above 280 GPa.Comment: 5 pages, 4 figure

    Effect of iodine incorporation on characteristic properties of cadmium telluride deposited in aqueous solution

    Get PDF
    The electrodeposition of polycrystalline I-doped CdTe was successfully performed from aqueous solutions containing cadmium nitrate (Cd(NO3)2 and tellurium oxide (TeO2). The effects of different I-doping concentrations in the electrolytic bath on the deposited CdTe layers deposited were evaluated structurally, optically, morphologically and electronically using X-ray diffraction (XRD), ultraviolet-visible spectrophotometry, scanning electron microscopy, photoelectrochemical cell measurement and direct-current (DC) conductivity test respectively. The XRD show reduction in the (111) cubic CdTe peak intensity and the calculated crystallite size of the CdTe:I layers above 5 ppm I-doping. At I-doping of 1000 ppm of the CdTe-bath and above, the deposition of only crystalline Te due to the formation of Cd-I complexes debarring the deposition of Cd and co-deposition of CdTe in aqueous solution was observed. Morphologically, reductions in grain size were observed above 5 ppm I-doping with high pinhole density and the formation of cracks within the CdTe:I layers. For the as-deposited CdTe:I layers, conduction type remained n-type across all the explored I-doping concentration of 200 ppm. For the CdCl2 and Ga2(SO4)2+CdCl2 treated CdTe:I layers, the transition from n- to p-type conductivity was observed for the CdTe:I baths doped with 20 ppm and above due to the reduced cadmium deposition on the substrate. The highest conductivity was observed at 5 ppm I-doping of the CdTe-bath. Observations made on the CdTe:I in aqueous solution differs from the non-aqueous solvent documented in the literature. These results are reported systematically in this communication

    Multiphase photo-capillary reactors coated with TiO2 films: preparation, characterization and photocatalytic performance

    Get PDF
    Quartz capillaries were assessed as multiphase photocatalytic reactors. The tested reaction was the salicylic acid (2-dihidroxibenzoic acid) oxidation. The catalyst (TiO2) was either in slurry or immobilized by sol-gel method onto the capillary wall. All experiments were conducted under oxygen flow and Taylor flow hydrodynamic regime. TiO2 Films were characterized by Raman spectroscopy, diffuse reflectance UV-Vis spectroscopy and scanning electronic microscopy. The effect of two synthesis variables was established. These variables were volumetric ratio of precursors solutions (i-PrO:2-propanol:nitric acid) and number of capillary coating cycles. These variables were found to importantly affect film homogeneity and oxidation rate. The highest initial reaction rate (106.32x10-6 mol dm-3s-1) was obtained when using the TiO2 as film prepared with a precursors volumetric ratio of 1:15:1 and with two coating cycles. For comparison purposes, the same oxidation process was conducted in a stirred reactor and it was found that the reaction rate value is diminished by almost four times in comparison with that obtained under Taylor flow in the capillary reactor. Selectivity was found to be dependant on the type of catalyst addition, slurry or immobilized. Catalytic films employed in this non-common reaction system were 2 reused three times losing less than 10% of their photocatalytic activity. The photonic efficiency was found to be two orders of magnitude higher in the coated capillary reactor than in the slurry stirred reactor.L. Hurtado acknowledges CONACYT-Mexico the scholarship No. 56499. Project PRODEP for advanced oxidation processes is also acknowledged for financial support

    Optical properties of MgH2 measured in situ in a novel gas cell for ellipsometry/spectrophotometry

    Get PDF
    The dielectric properties of alpha-MgH2 are investigated in the photon energy range between 1 and 6.5 eV. For this purpose, a novel sample configuration and experimental setup are developed that allow both optical transmission and ellipsometric measurements of a transparent thin film in equilibrium with hydrogen. We show that alpha-MgH2 is a transparent, colour neutral insulator with a band gap of 5.6 +/- 0.1 eV. It has an intrinsic transparency of about 80% over the whole visible spectrum. The dielectric function found in this work confirms very recent band structure calculations using the GW approximation by Alford and Chou [J.A. Alford and M.Y. Chou (unpublished)]. As Pd is used as a cap layer we report also the optical properties of PdHx thin films.Comment: REVTeX4, 15 pages, 12 figures, 5 table

    Hydrogen-doped Brookite TiO2 Nanobullets Array as a Novel Photoanode for Efficient Solar Water Splitting

    Get PDF
    As a representative photocatalyst for photoelectrochemical solar water splitting, TiO2 has been intensively studied but most researches have focused on the rutile and anatsase phases because brookite, another important crystalline polymorph of TiO2, rarely exists in nature and is difficult to synthesize. In this work, hydrogen doped brookite (H:brookite) nanobullet arrays were synthesized via a well-designed solution reaction for the first time. H:brookite shows highly improved PEC properties with excellent stability, enhanced photocurrent, and significantly high Faradaic efficiency for overall solar water splitting. To support the experimental data, ab initio density functional theory calculations were also conducted. At the interstitial doping site that has minimum formation energy, the hydrogen atoms act as shallow donors and exist as H+. which has the minimum formation energy among three states of hydrogen (H+. H0, and H-). The calculated density of states of H:brookite shows a narrowed bandgap and an increased electron density compared to the pristine brookite. The combined experimental and theoretical results provide frameworks for the exploration of the PEC properties of doped brookite and extend our knowledge regarding the undiscovered properties of brookite of TiO2.ope

    Intense violet–blue emission and paramagnetism of nanocrystalline Gd3+ doped ZnO ceramics

    Get PDF
    Nanocrystalline Zn1-xGdxO (x = 0, 0.02, 0.04, 0.06, and 0.08) ceramics were synthesized by ball milling and subsequent solid-state reaction. The transmission electron microscopy (TEM) micrograph of as synthesized samples revealed the formation of crystallites with an average diameter of 60 nm, and the selected area electron diffraction (SAED) pattern confirmed the formation of wurtzite structure. A red shift in the band gap was observed with increasing Gd3+ concentration. The photoluminescence of nanocrystalline Gd3+ doped ZnO exhibited a strong violet–blue emission. Concentration dependence of the emission intensity of Gd3+ in ZnO was studied, and the critical concentration was found to be 4 mol% of Gd3+. The Gd3+ doped ZnO exhibited paramagnetic behavior at room temperature, and the magnetic moment increased with Gd3+ concentration

    Physicochemical Characterization of Passive Films and Corrosion Layers by Differential Admittance and Photocurrent Spectroscopy

    Get PDF
    Two different electrochemical techniques, differential admittance and photocurrent spectroscopy, for the characterization of electronic and solid state properties of passive films and corrosion layers are described and critically evaluated. In order to get information on the electronic properties of passive film and corrosion layers as well as the necessary information to locate the characteristic energy levels of the passive film/electrolyte junction like: flat band potential (Ufb), conduction band edge (EC) or valence band edge (EV), a wide use of Mott-Schottky plots is usually reported in corrosion science and passivity studies. It has been shown, in several papers, that the use of simple M-S theory to get information on the electronic properties and energy levels location at the film/electrolyte interface can be seriously misleading and/or conflicting with the physical basis underlying the M-S theory. A critical appraisal of this approach to the study of very thin and thick anodic passive film grown on base-metals (Cr, Ni, Fe, SS etc..) or on valve metals (Ta, Nb, W etc..) is reported in this work, together with possible alternative approach to overcome some of the mentioned inconsistencies. At this aim the theory of amorphous semiconductor Schottky barrier, introduced several years ago in the study of passive film/electrolyte junction, is reviewed by taking into account some of the more recent results obtained by the present authors. Future developments of the theory appears necessary to get more exact quantitative information on the electronic properties of passive films, specially in the case of very thin film like those formed on base metals and their alloys. The second technique described in this chapter, devoted to the physico-chemical characterization of passive film and corrosion layers, is a more recent technique based on the analysis of the photo-electrochemical answer of passive film/electrolyte junction under illumination with photons having suitable energy. Such a technique usually referred to as Photocurrent Spectroscopy (PCS) has been developed on the basis of the large research effort carried out by several groups in the 1970’s and aimed to investigate the possible conversion of solar energy by means of electrochemical cells. In this work the fundamentals of semiconductor/electrolyte junctions under illumination will be highlighted both for crystalline and amorphous materials. The role of amorphous nature and film thickness on the photo-electrochemical answer of passive film/solution interface is reviewed as well the use of PCS for quantitative analysis of the film composition based on a semi-empirical correlation between optical band gap and difference of electronegativity of film constituents previously suggested by the present authors. In this frame the results of PCS studies on valve metal oxides and valve metal mixed oxides will be discussed in order to show the validity of the proposed method. The results of PCS studies aimed to get information on passive film composition and carried out by different authors on base metals (Fe, Cr, Ni) and their alloys, including stainless steel, will be also compared with compositional analysis carried out by well-established surface analysis techniques

    Beitrag zum Problem der heterosynaptischen Facilitation in Aplysia californica

    Full text link
    1. Heterosynaptic facilitation (H.S.F.) of single neurons in the central nervous system of Aplysia can be repeated virtually indefinitely, provided sufficient time is allowed for recovery between the trials.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47439/1/424_2004_Article_BF00362956.pd
    corecore