117 research outputs found

    Evolution of Raman spectra in Mo1x_{1-x}Wx_xTe2_2 alloys

    Full text link
    The structural polymorphism in transition metal dichalcogenides (TMDs) provides exciting opportunities for developing advanced electronics. For example, MoTe2_2 crystallizes in the 2H semiconducting phase at ambient temperature and pressure, but transitions into the 1T^\prime semimetallic phase at high temperatures. Alloying MoTe2_2 with WTe2_2 reduces the energy barrier between these two phases, while also allowing access to the Td_d Weyl semimetal phase. The MoWTe2_2 alloy system is therefore promising for developing phase change memory technology. However, achieving this goal necessitates a detailed understanding of the phase composition in the MoTe2_2-WTe2_2 system. We combine polarization-resolved Raman spectroscopy with X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM) to study MoWTe2_2 alloys over the full compositional range x from 0 to 1. We identify Raman and XRD signatures characteristic of the 2H, 1T^\prime, and Td_d structural phases that agree with density-functional theory (DFT) calculations, and use them to identify phase fields in the MoTe2_2-WTe2_2 system, including single-phase 2H, 1T^\prime, and Td_d regions, as well as a two-phase 1T^\prime + Td_d region. Disorder arising from compositional fluctuations in MoWTe2_2 alloys breaks inversion and translational symmetry, leading to the activation of an infrared 1T^\prime-MoTe2_2 mode and the enhancement of a double-resonance Raman process in 2H-MoWTe2_2 alloys. Compositional fluctuations limit the phonon correlation length, which we estimate by fitting the observed asymmetric Raman lineshapes with a phonon confinement model. These observations reveal the important role of disorder in MoWTe2_2 alloys, clarify the structural phase boundaries, and provide a foundation for future explorations of phase transitions and electronic phenomena in this system.Comment: 18 pages, 5 figures, 1 tabl

    A Solanum lycopersicum polyamine oxidase contributes to the control of plant growth, xylem differentiation, and drought stress tolerance

    Get PDF
    Polyamines are involved in several plant physiological processes. In Arabidopsis thaliana, five FAD-dependent polyamine oxidases (AtPAO1 to AtPAO5) contribute to polyamine homeostasis. AtPAO5 catalyzes the back-conversion of thermospermine (T-Spm) to spermidine and plays a role in plant development, xylem differentiation, and abiotic stress tolerance. In the present study, to verify whether T-Spm metabolism can be exploited as a new route to improve stress tolerance in crops and to investigate the underlying mechanisms, tomato (Solanum lycopersicum) AtPAO5 homologs were identified (SlPAO2, SlPAO3, and SlPAO4) and CRISPR/Cas9-mediated loss-of-function slpao3 mutants were obtained. Morphological, molecular, and physiological analyses showed that slpao3 mutants display increased T-Spm levels and exhibit changes in growth parameters, number and size of xylem elements, and expression levels of auxin- and gibberellin-related genes compared to wild-type plants. The slpao3 mutants are also characterized by improved tolerance to drought stress, which can be attributed to a diminished xylem hydraulic conductivity that limits water loss, as well as to a reduced vulnerability to embolism. Altogether, this study evidences conservation, though with some significant variations, of the T-Spm-mediated regulatory mechanisms controlling plant growth and differentiation across different plant species and highlights the T-Spm role in improving stress tolerance while not constraining growth

    Distinct Effects of p19 RNA Silencing Suppressor on Small RNA Mediated Pathways in Plants

    Get PDF
    RNA silencing is one of the main defense mechanisms employed by plants to fight viruses. In change, viruses have evolved silencing suppressor proteins to neutralize antiviral silencing. Since the endogenous and antiviral functions of RNA silencing pathway rely on common components, it was suggested that viral suppressors interfere with endogenous silencing pathway contributing to viral symptom development. In this work, we aimed to understand the effects of the tombusviral p19 suppressor on endogenous and antiviral silencing during genuine virus infection. We showed that ectopically expressed p19 sequesters endogenous small RNAs (sRNAs) in the absence, but not in the presence of virus infection. Our presented data question the generalized model in which the sequestration of endogenous sRNAs by the viral suppressor contributes to the viral symptom development. We further showed that p19 preferentially binds the perfectly paired ds-viral small interfering RNAs (vsiRNAs) but does not select based on their sequence or the type of the 5’ nucleotide. Finally, co-immunoprecipitation of sRNAs with AGO1 or AGO2 from virus-infected plants revealed that p19 specifically impairs vsiRNA loading into AGO1 but not AGO2. Our findings, coupled with the fact that p19-expressing wild type Cymbidium ringspot virus (CymRSV) overcomes the Nicotiana benthamiana silencing based defense killing the host, suggest that AGO1 is the main effector of antiviral silencing in this host-virus combination

    The C4 protein of tomato yellow leaf curl Sardinia virus primes drought tolerance in tomato through morphological adjustments

    Get PDF
    Viruses can interfere with the ability of plants to overcome abiotic stresses, indicating the existence of common molecular networks that regulate stress responses. A begomovirus causing the tomato yellow leaf curl disease was recently shown to enhance heat tolerance in tomato and drought tolerance in tomato and Nicotiana benthamiana and experimental evidence suggested that the virus-encoded protein C4 is the main trigger of drought responses. However, the physiological and molecular events underlying C4-induced drought tolerance need further elucidation. In this study, transgenic tomato plants expressing the tomato yellow leaf curl Sardinia virus (TYLCSV) C4 protein were subjected to severe drought stress, followed by recovery. Morphometric parameters, water potential, gas exchanges, and hormone contents in leaves were measured, in combination with molecular analysis of candidate genes involved in stress response and hormone metabolism. Collected data proved that the expression of TYLCSV C4 positively affected the ability of transgenic plants to tolerate water stress, by delaying the onset of stress-related features, improving the plant water use efficiency and facilitating a rapid post-rehydration recovery. In addition, we demonstrated that specific anatomical and hydraulic traits, rather than biochemical signals, are the keynote of the C4-associated stress resilience. Our results provide novel insights into the biology underpinning drought tolerance in TYLCSV C4-expressing tomato plants, paving the way for further deepening the mechanism through which such proteins tune the plant-virus interaction

    Metabolic Engineering of Potato Carotenoid Content through Tuber-Specific Overexpression of a Bacterial Mini-Pathway

    Get PDF
    BACKGROUND: Since the creation of “Golden Rice”, biofortification of plant-derived foods is a promising strategy for the alleviation of nutritional deficiencies. Potato is the most important staple food for mankind after the cereals rice, wheat and maize, and is extremely poor in provitamin A carotenoids. METHODOLOGY: We transformed potato with a mini-pathway of bacterial origin, driving the synthesis of beta-carotene (Provitamin A) from geranylgeranyl diphosphate. Three genes, encoding phytoene synthase (CrtB), phytoene desaturase (CrtI) and lycopene beta-cyclase (CrtY) from Erwinia, under tuber-specific or constitutive promoter control, were used. 86 independent transgenic lines, containing six different promoter/gene combinations, were produced and analyzed. Extensive regulatory effects on the expression of endogenous genes for carotenoid biosynthesis are observed in transgenic lines. Constitutive expression of the CrtY and/or CrtI genes interferes with the establishment of transgenosis and with the accumulation of leaf carotenoids. Expression of all three genes, under tuber-specific promoter control, results in tubers with a deep yellow (“golden”) phenotype without any adverse leaf phenotypes. In these tubers, carotenoids increase approx. 20-fold, to 114 mcg/g dry weight and beta-carotene 3600-fold, to 47 mcg/g dry weight. CONCLUSIONS: This is the highest carotenoid and beta-carotene content reported for biofortified potato as well as for any of the four major staple foods (the next best event being “Golden Rice 2”, with 31 mcg/g dry weight beta-carotene). Assuming a beta-carotene to retinol conversion of 6∶1, this is sufficient to provide 50% of the Recommended Daily Allowance of Vitamin A with 250 gms (fresh weight) of “golden” potatoes

    JARVIS-Leaderboard: a large scale benchmark of materials design methods

    Get PDF
    Lack of rigorous reproducibility and validation are significant hurdles for scientific development across many fields. Materials science, in particular, encompasses a variety of experimental and theoretical approaches that require careful benchmarking. Leaderboard efforts have been developed previously to mitigate these issues. However, a comprehensive comparison and benchmarking on an integrated platform with multiple data modalities with perfect and defect materials data is still lacking. This work introduces JARVIS-Leaderboard, an open-source and community-driven platform that facilitates benchmarking and enhances reproducibility. The platform allows users to set up benchmarks with custom tasks and enables contributions in the form of dataset, code, and meta-data submissions. We cover the following materials design categories: Artificial Intelligence (AI), Electronic Structure (ES), Force-fields (FF), Quantum Computation (QC), and Experiments (EXP). For AI, we cover several types of input data, including atomic structures, atomistic images, spectra, and text. For ES, we consider multiple ES approaches, software packages, pseudopotentials, materials, and properties, comparing results to experiment. For FF, we compare multiple approaches for material property predictions. For QC, we benchmark Hamiltonian simulations using various quantum algorithms and circuits. Finally, for experiments, we use the inter-laboratory approach to establish benchmarks. There are 1281 contributions to 274 benchmarks using 152 methods with more than 8 million data points, and the leaderboard is continuously expanding. The JARVIS-Leaderboard is available at the website: https://pages.nist.gov/jarvis_leaderboard
    corecore