13 research outputs found
Characterization of the neutron induced single event upset in SRAM around high megavoltage clinical accelerators
102 oral PERIPHERAL GAMMA DOSE AND THERMAL NEUTRON FLUENCIES EVALUATION IN DIFFERENT MATERIALS FOR IMRT
SU-E-T-249: Neutron Model Upgrade for Radiotherapy Patients Monitoring Using a New Online Detector
SU-E-T-365: Estimation of Neutron Ambient Dose Equivalents for Radioprotection Exposed Workers in Radiotherapy Facilities Based On Characterization Patient Risk Estimation
EP-1796: Evaluation of peripheral neutron equivalent dose and second cancer risk in radiotherapy patients
EP-1455: Set-up of a new online digital detector for peripheral neutron equivalent dose estimation in radiotherapy patients
EP-1798: Online neutron fluence measurements in phantom for second cancer risk estimation in radiotherapy
Aging aggravates cachexia in tumor-bearing mice.
Background: Cancer is primarily a disease of high age in humans, yet most mouse studies on cancer cachexia are conducted using young adolescent mice. Given that metabolism and muscle function change with age, we hypothesized that aging may affect cachexia progression in mouse models. Methods: We compare tumor and cachexia development in young and old mice of three different strains (C57BL/6J, C57BL/6N, BALB/c) and with two different tumor cell lines (Lewis Lung Cancer, Colon26). Tumor size, body and organ weights, fiber cross-sectional area, circulating cachexia biomarkers, and molecular markers of muscle atrophy and adipose tissue wasting are shown. We correlate inflammatory markers and body weight dependent on age in patients with cancer. Results: We note fundamental differences between mouse strains. Aging aggravates weight loss in LLC-injected C57BL/6J mice, drives it in C57BL/6N mice, and does not influence weight loss in C26-injected BALB/c mice. Glucose tolerance is unchanged in cachectic young and old mice. The stress marker GDF15 is elevated in cachectic BALB/c mice independent of age and increased in old C57BL/6N and J mice. Inflammatory markers correlate significantly with weight loss only in young mice and patients. Conclusions: Aging affects cachexia development and progression in mice in a strain-dependent manner and influences the inflammatory profile in both mice and patients. Age is an important factor to consider for future cachexia studies
Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic β-cells
AbstractDiabetes is a global health problem caused primarily by the inability of pancreatic β-cells to secrete adequate levels of insulin. The molecular mechanisms underlying the progressive failure of β-cells to respond to glucose in type-2 diabetes remain unresolved. Using a combination of transcriptomics and proteomics, we find significant dysregulation of major metabolic pathways in islets of diabetic βV59M mice, a non-obese, eulipidaemic diabetes model. Multiple genes/proteins involved in glycolysis/gluconeogenesis are upregulated, whereas those involved in oxidative phosphorylation are downregulated. In isolated islets, glucose-induced increases in NADH and ATP are impaired and both oxidative and glycolytic glucose metabolism are reduced. INS-1 β-cells cultured chronically at high glucose show similar changes in protein expression and reduced glucose-stimulated oxygen consumption: targeted metabolomics reveals impaired metabolism. These data indicate hyperglycaemia induces metabolic changes in β-cells that markedly reduce mitochondrial metabolism and ATP synthesis. We propose this underlies the progressive failure of β-cells in diabetes.</jats:p
