323 research outputs found

    High density InAlAs/GaAlAs quantum dots for non-linear optics in microcavities

    Get PDF
    Structural and optical properties of InAlAs/GaAlAs quantum dots grown by molecular beam epitaxy are studied using transmission electron microscopy, temperature- and time resolvedphotoluminescence. The control of the recombination lifetime (50 ps – 1.25 ns), and of the dot density (5.10−8 – 2.1011 cm−3) strongly suggest that these material systems can find wide applications in opto-electronic devices as focusing non linear dispersive materials as well as fast saturable absorbers

    A Review of ENSO Influence on the North Atlantic. A Non-Stationary Signal

    Get PDF
    ReviewThe atmospheric seasonal cycle of the North Atlantic region is dominated by meridional movements of the circulation systems: from the tropics, where the West African Monsoon and extreme tropical weather events take place, to the extratropics, where the circulation is dominated by seasonal changes in the jetstream and extratropical cyclones. Climate variability over the North Atlantic is controlled by various mechanisms. Atmospheric internal variability plays a crucial role in the mid-latitudes. However, El Niño-Southern Oscillation (ENSO) is still the main source of predictability in this region situated far away from the Pacific. Although the ENSO influence over tropical and extra-tropical areas is related to different physical mechanisms, in both regions this teleconnection seems to be non-stationary in time and modulated by multidecadal changes of the mean flow. Nowadays, long observational records (greater than 100 years) and modeling projects (e.g., CMIP) permit detecting non-stationarities in the influence of ENSO over the Atlantic basin, and further analyzing its potential mechanisms. The present article reviews the ENSO influence over the Atlantic region, paying special attention to the stability of this teleconnection over time and the possible modulators. Evidence is given that the ENSO–Atlantic teleconnection is weak over the North Atlantic. In this regard, the multidecadal ocean variability seems to modulate the presence of teleconnections, which can lead to important impacts of ENSO and to open windows of opportunity for seasonal predictability.We thank the Climatic Research Unit (CRU), the National Centers for Environmental Prediction (NCEP), the Met Office Hadley Centre and the US National Hurricane Center (NHC) for the Land Precipitation, reanalysis, SST and HURDAT2 datasets, respectively. Belen Rodríguez-Fonseca, Roberto Suárez-Moreno, Jorge López-Parages, Iñigo Gómara, Elsa Mohino, Teresa Losada and Antonio Castaño-Tierno are supported by the research projects PREFACE (EUFP7/2007-2013 Grant Agreement 603521) and MULCLIVAR (CGL2012-38923-C02-01-Spanish Ministry of Economy and Competitiveness). Blanca Ayarzagüena is supported by the Natural Environment Research Council (grant number NE/M006123/1). Julián Villamayor is granted through a scholarship from the MICINN—Spanish government (BES-2013-063821

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    Knowledge- and innovation-based business models for future growth : digitalized business models and portfolio considerations.

    Get PDF
    Today’s key challenge for firm growth relies in the integration of digital technologies and their use in new business models. Thus, firms increasingly engage in a digital transformation and in digitalizing their business model. Firms can apply digital technologies for improved or novel internal and external processes and integrate them in new business models. The digital transformation itself demands diverse knowledge from diverse origins in the firm. We examine the key concepts related to business model digitalization. We develop a conceptual matrix for portfolio considerations of firm business model digitalization. We introduce the seven contributions in this special issue on knowledge and innovation related to business and offer some recommendations for future research on the new working conditions and digital identities of firms

    Can reducing the incoming energy flux over the Southern Ocean in a CGCM improve its simulation of tropical climate?

    Get PDF
    Atmosphere-ocean general circulation models (CGCMs) show important systematic errors. Simulated precipitation in the tropics is generally overestimated over the oceans south of the equator, and stratocumulus (SCu) clouds are underestimated above too warm sea surface temperatures (SSTs). In the extratropics, SSTs are also too warm over the Southern Ocean. We argue that ameliorating these extratropical errors in a CGCM can result in an improved model's performance in the tropics depending upon the success in simulating the sensitivity of SCu to underlying SST. Our arguments are supported by the very different response obtained with two CGCMs to an idealized reduction of solar radiation flux incident at the top of the atmosphere over the Southern Ocean. It is shown that local perturbation impacts are very similar in the two models but that SST reductions in the SCu regions of the southern subtropics are stronger in the model with the stronger SCu-SST feedbacks.NOAA's Climate Program Office, Climate Variability and Predictability Program Award. Grant Number: NA14OAR4310278. European Union Seventh Framework Programme. Grant Numbers: FP7/2007–2013, 60352Peer reviewe

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Nanomechanical Characterization of Ovarian Cancer Cell Lines as a Marker of Response to 2c Treatment

    Get PDF
    Epithelial ovarian cancers (EOCs) are a heterogeneous group of tumors with different molecular and clinical features. In past decades, few improvements have been achieved in terms of EOC management and treatment efficacy, such that the 5-year survival rate of patients remained almost unchanged. A better characterization of EOCs’ heterogeneity is needed to identify cancer vulnerabilities, stratify patients and adopt proper therapies. The mechanical features of malignant cells are emerging as new biomarkers of cancer invasiveness and drug resistance that can further improve our knowledge of EOC biology and allow the identification of new molecular targets. In this study, we determined the inter and intra-mechanical heterogeneity of eight ovarian cancer cell lines and their association with tumor invasiveness and resistance to an anti-tumoral drug with cytoskeleton depolymerization activity (2c)

    PLECOPTERA in: Les Insectes du Monde

    Get PDF
    corecore