321 research outputs found
Spinocerebellar ataxia types 1, 2, 3, and 6: disease severity and nonataxia symptoms.
OBJECTIVE: To identify factors that determine disease severity and clinical
phenotype of the most common spinocerebellar ataxias (SCAs), we studied 526
patients with SCA1, SCA2, SCA3. or SCA6.
METHODS: To measure the severity of ataxia we used the Scale for the Assessment
and Rating of Ataxia (SARA). In addition, nonataxia symptoms were assessed with
the Inventory of Non-Ataxia Symptoms (INAS). The INAS count denotes the number of
nonataxia symptoms in each patient.
RESULTS: An analysis of covariance with SARA score as dependent variable and
repeat lengths of the expanded and normal allele, age at onset, and disease
duration as independent variables led to multivariate models that explained 60.4%
of the SARA score variance in SCA1, 45.4% in SCA2, 46.8% in SCA3, and 33.7% in
SCA6. In SCA1, SCA2, and SCA3, SARA was mainly determined by repeat length of the
expanded allele, age at onset, and disease duration. The only factors determining
the SARA score in SCA6 were age at onset and disease duration. The INAS count was
5.0 +/- 2.3 in SCA1, 4.6 +/- 2.2 in SCA2, 5.2 +/- 2.5 in SCA3, and 2.0 +/- 1.7 in
SCA6. In SCA1, SCA2, and SCA3, SARA score and disease duration were the strongest
predictors of the INAS count. In SCA6, only age at onset and disease duration had
an effect on the INAS count.
CONCLUSIONS: Our study suggests that spinocerebellar ataxia (SCA) 1, SCA2, and
SCA3 share a number of common biologic properties, whereas SCA6 is distinct in
that its phenotype is more determined by age than by disease-related factors
Bi-allelic JAM2 Variants Lead to Early-Onset Recessive Primary Familial Brain Calcification.
Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder characterized by a combination of neurological, psychiatric, and cognitive decline associated with calcium deposition on brain imaging. To date, mutations in five genes have been linked to PFBC. However, more than 50% of individuals affected by PFBC have no molecular diagnosis. We report four unrelated families presenting with initial learning difficulties and seizures and later psychiatric symptoms, cerebellar ataxia, extrapyramidal signs, and extensive calcifications on brain imaging. Through a combination of homozygosity mapping and exome sequencing, we mapped this phenotype to chromosome 21q21.3 and identified bi-allelic variants in JAM2. JAM2 encodes for the junctional-adhesion-molecule-2, a key tight-junction protein in blood-brain-barrier permeability. We show that JAM2 variants lead to reduction of JAM2 mRNA expression and absence of JAM2 protein in patient's fibroblasts, consistent with a loss-of-function mechanism. We show that the human phenotype is replicated in the jam2 complete knockout mouse (jam2 KO). Furthermore, neuropathology of jam2 KO mouse showed prominent vacuolation in the cerebral cortex, thalamus, and cerebellum and particularly widespread vacuolation in the midbrain with reactive astrogliosis and neuronal density reduction. The regions of the human brain affected on neuroimaging are similar to the affected brain areas in the myorg PFBC null mouse. Along with JAM3 and OCLN, JAM2 is the third tight-junction gene in which bi-allelic variants are associated with brain calcification, suggesting that defective cell-to-cell adhesion and dysfunction of the movement of solutes through the paracellular spaces in the neurovascular unit is a key mechanism in CNS calcification
Early symptoms in spinocerebellar ataxia type 1, 2, 3, and 6.
Abstract: Onset of genetically determined neurodegenerative
diseases is difficult to specify because of their insidious and
slowly progressive nature. This is especially true for spinocerebellar
ataxia (SCA) because of varying affection of many
parts of the nervous system and huge variability of symptoms.
We investigated early symptoms in 287 patients with
SCA1, SCA2, SCA3, or SCA6 and calculated the influence
of CAG repeat length on age of onset depending on (1) the
definition of disease onset, (2) people defining onset, and (3)
duration of symptoms. Gait difficulty was the initial symptom
in two-thirds of patients. Double vision, dysarthria, impaired
hand writing, and episodic vertigo preceded ataxia in 4% of
patients, respectively. Frequency of other early symptoms did
not differ from controls and was regarded unspecific. Data
about disease onset varied between patients and relatives for
1 year or more in 44% of cases. Influence of repeat length
on age of onset was maximum when onset was defined as
beginning of permanent gait disturbance and cases with
symptoms for more than 10 years were excluded. Under
these conditions, CAG repeat length determined 64% of
onset variability in SCA1, 67% in SCA2, 46% in SCA3, and
41% in SCA6 demonstrating substantial influence of nonrepeat
factors on disease onset in all SCA subtypes. Identification
of these factors is of interest as potential targets for
disease modifying compounds. In this respect, recognition of
early symptoms that develop before onset of ataxia is mandatory
to determine the shift from presymptomatic to affected
status in SCA
Biallelic mutations in neurofascin cause neurodevelopmental impairment and peripheral demyelination.
Axon pathfinding and synapse formation are essential processes for nervous system development and function. The assembly of myelinated fibres and nodes of Ranvier is mediated by a number of cell adhesion molecules of the immunoglobulin superfamily including neurofascin, encoded by the NFASC gene, and its alternative isoforms Nfasc186 and Nfasc140 (located in the axonal membrane at the node of Ranvier) and Nfasc155 (a glial component of the paranodal axoglial junction). We identified 10 individuals from six unrelated families, exhibiting a neurodevelopmental disorder characterized with a spectrum of central (intellectual disability, developmental delay, motor impairment, speech difficulties) and peripheral (early onset demyelinating neuropathy) neurological involvement, who were found by exome or genome sequencing to carry one frameshift and four different homozygous non-synonymous variants in NFASC. Expression studies using immunostaining-based techniques identified absent expression of the Nfasc155 isoform as a consequence of the frameshift variant and a significant reduction of expression was also observed in association with two non-synonymous variants affecting the fibronectin type III domain. Cell aggregation studies revealed a severely impaired Nfasc155-CNTN1/CASPR1 complex interaction as a result of the identified variants. Immunofluorescence staining of myelinated fibres from two affected individuals showed a severe loss of myelinated fibres and abnormalities in the paranodal junction morphology. Our results establish that recessive variants affecting the Nfasc155 isoform can affect the formation of paranodal axoglial junctions at the nodes of Ranvier. The genetic disease caused by biallelic NFASC variants includes neurodevelopmental impairment and a spectrum of central and peripheral demyelination as part of its core clinical phenotype. Our findings support possible overlapping molecular mechanisms of paranodal damage at peripheral nerves in both the immune-mediated and the genetic disease, but the observation of prominent central neurological involvement in NFASC biallelic variant carriers highlights the importance of this gene in human brain development and function
Structural and functional MRI abnormalities of cerebellar cortex and nuclei in SCA3, SCA6 and Friedreich\u27s ataxia
Spinocerebellar ataxia type 3, spinocerebellar ataxia type 6 and Friedreich\u27s ataxia are common hereditary ataxias. Different patterns of atrophy of the cerebellar cortex are well known. Data on cerebellar nuclei are sparse. Whereas cerebellar nuclei have long been thought to be preserved in spinocerebellar ataxia type 6, histology shows marked atrophy of the nuclei in Friedreich\u27s ataxia and spinocerebellar ataxia type 3. In the present study susceptibility weighted imaging was used to assess atrophy of the cerebellar nuclei in patients with spinocerebellar ataxia type 6 (n = 12, age range 41-76 years, five female), Friedreich\u27s ataxia (n = 12, age range 21-55 years, seven female), spinocerebellar ataxia type 3 (n = 10, age range 34-67 years, three female), and age-and gender-matched controls (total n = 23, age range 22-75 years, 10 female). T1-weighted magnetic resonance images were used to calculate the volume of the cerebellum. In addition, ultra-high field functional magnetic resonance imaging was performed with optimized normalization methods to assess function of the cerebellar cortex and nuclei during simple hand movements. As expected, the volume of the cerebellum was markedly reduced in spinocerebellar ataxia type 6, preserved in Friedreich\u27s ataxia, and mildy reduced in spinocerebellar ataxia type 3. The volume of the cerebellar nuclei was reduced in the three patient groups compared to matched controls (P-values \u3c 0.05; two-sample t-tests). Atrophy of the cerebellar nuclei was most pronounced in spinocerebellar ataxia type 6. On a functional level, hand-movement-related cerebellar activation was altered in all three disorders. Within the cerebellar cortex, functional magnetic resonance imaging signal was significantly reduced in spinocerebellar ataxia type 6 and Friedreich\u27s ataxia compared to matched controls (P-values \u3c 0.001, bootstrap-corrected cluster-size threshold; two-sample t-tests). The difference missed significance in spinocerebellar ataxia type 3. Within the cerebellar nuclei, reductions were significant when comparing spinocerebellar ataxia type 6 and Friedreich\u27s ataxia to matched controls (P \u3c 0.01, bootstrap-corrected cluster-size threshold; two-sample t-tests). Susceptibility weighted imaging allowed depiction of atrophy of the cerebellar nuclei in patients with Friedreich\u27s ataxia and spinocerebellar ataxia type 3. In spinocerebellar ataxia type 6, pathology was not restricted to the cerebellar cortex but also involved the cerebellar nuclei. Functional magnetic resonance imaging data, on the other hand, revealed that pathology in Friedreich\u27s ataxia and spinocerebellar ataxia type 3 is not restricted to the cerebellar nuclei. There was functional involvement of the cerebellar cortex despite no or little structural changes
Genome-Wide Linkage Analysis of Malaria Infection Intensity and Mild Disease
Although balancing selection with the sickle-cell trait and other red blood cell disorders has emphasized the interaction between malaria and human genetics, no systematic approach has so far been undertaken towards a comprehensive search for human genome variants influencing malaria. By screening 2,551 families in rural Ghana, West Africa, 108 nuclear families were identified who were exposed to hyperendemic malaria transmission and were homozygous wild-type for the established malaria resistance factors of hemoglobin (Hb)S, HbC, alpha(+) thalassemia, and glucose-6-phosphate-dehydrogenase deficiency. Of these families, 392 siblings aged 0.5–11 y were characterized for malaria susceptibility by closely monitoring parasite counts, malaria fever episodes, and anemia over 8 mo. An autosome-wide linkage analysis based on 10,000 single-nucleotide polymorphisms was conducted in 68 selected families including 241 siblings forming 330 sib pairs. Several regions were identified which showed evidence for linkage to the parasitological and clinical phenotypes studied, among them a prominent signal on Chromosome 10p15 obtained with malaria fever episodes (asymptotic z score = 4.37, empirical p-value = 4.0 × 10(−5), locus-specific heritability of 37.7%; 95% confidence interval, 15.7%–59.7%). The identification of genetic variants underlying the linkage signals may reveal as yet unrecognized pathways influencing human resistance to malaria
Visuomotor adaptive improvement and aftereffects are impaired differentially following cerebellar lesions in SCA and PICA territory
The aim of the present study was to elucidate the contribution of the superior and posterior inferior cerebellum to adaptive improvement and aftereffects in a visuomotor adaptation task. Nine patients with ischemic lesions within the territory of the posterior inferior cerebellar artery (PICA), six patients with ischemic lesions within the territory of the superior cerebellar artery (SCA) and 17 age-matched controls participated. All subjects performed center-out reaching movements under 60° rotation of visual feedback. For the assessment of aftereffects, we tested retention of adaptation and de-adaptation under 0° visual rotation. From this data we also quantified five measures of motor performance. Cerebellar lesion-symptom mapping was performed using magnetic resonance imaging subtraction analysis. Adaptive improvement during 60° rotation was significantly degraded in PICA patients and even more in SCA patients. Subtraction analysis revealed that posterior (Crus I) as well as anterior cerebellar regions (lobule V) showed a common overlap related to deficits in adaptive improvement. However, for aftereffect measures as well as for motor performance variables only SCA patients, but not PICA patients showed significant differences to control subjects. Subtraction analysis showed that affection of lobules V and VI were more common in patients with impaired retention and de-adaptation, respectively. Data shows that areas both within the superior and posterior inferior cerebellum are involved in adaptive improvement. However, only the superior cerebellum including lobules V and VI appears to be important for aftereffects and therefore true adaptive ability
Investigating the neural mechanisms of transcranial direct current stimulation effects on human cognition: Current issues and potential solutions
Transcranial direct current stimulation (tDCS) has been studied extensively for its potential to enhance human cognitive functions in healthy individuals and to treat cognitive impairment in various clinical populations. However, little is known about how tDCS modulates the neural networks supporting cognition and the complex interplay with mediating factors that may explain the frequently observed variability of stimulation effects within and between studies. Moreover, research in this field has been characterized by substantial methodological variability, frequent lack of rigorous experimental control and small sample sizes, thereby limiting the generalizability of findings and translational potential of tDCS. The present manuscript aims to delineate how these important issues can be addressed within a neuroimaging context, to reveal the neural underpinnings, predictors and mediators of tDCS-induced behavioral modulation. We will focus on functional magnetic resonance imaging (fMRI), because it allows the investigation of tDCS effects with excellent spatial precision and sufficient temporal resolution across the entire brain. Moreover, high resolution structural imaging data can be acquired for precise localization of stimulation effects, verification of electrode positions on the scalp and realistic current modeling based on individual head and brain anatomy. However, the general principles outlined in this review will also be applicable to other imaging modalities. Following an introduction to the overall state-of-the-art in this field, we will discuss in more detail the underlying causes of variability in previous tDCS studies. Moreover, we will elaborate on design considerations for tDCS-fMRI studies, optimization of tDCS and imaging protocols and how to assure high-level experimental control. Two additional sections address the pressing need for more systematic investigation of tDCS effects across the healthy human lifespan and implications for tDCS studies in age-associated disease, and potential benefits of establishing large-scale, multidisciplinary consortia for more coordinated tDCS research in the future. We hope that this review will contribute to more coordinated, methodologically sound, transparent and reproducible research in this field. Ultimately, our aim is to facilitate a better understanding of the underlying mechanisms by which tDCS modulates human cognitive functions and more effective and individually tailored translational and clinical applications of this technique in the future
- …
