1,587 research outputs found
Dramatic Changes in the Electronic Structure Upon Transition to the Collapsed Tetragonal Phase in CaFe2As2
We use angle-resolved photoemission spectroscopy (ARPES) and density
functional theory (DFT) calculations to study the electronic structure of
CaFeAs in previously unexplored collapsed tetragonal (CT) phase. This
unusual phase of the iron arsenic high temperature superconductors was hard to
measure as it exists only under pressure. By inducing internal strain, via the
post growth, thermal treatment of the single crystals, we were able to
stabilize the CT phase at ambient-pressure. We find significant differences in
the Fermi surface topology and band dispersion data from the more common
orthorhombic-antiferromagnetic or tetragonal-paramagnetic phases, consistent
with electronic structure calculations. The top of the hole bands sinks below
the Fermi level, which destroys the nesting present in parent phases. The
absence of nesting in this phase along with apparent loss of Fe magnetic
moment, are now clearly experimentally correlated with the lack of
superconductivity in this phase.Comment: 5 pages, 4 figures, accepted in PRB(RC
SO(4) Theory of Competition between Triplet Superconductivity and Antiferromagnetism in Bechgaard Salts
Motivated by recent experiments with Bechgaard salts, we investigate the
competition between antiferromagnetism and triplet superconductivity in quasi
one-dimensional electron systems. We unify the two orders in an SO(4) symmetric
framework, and demonstrate the existence of such symmetry in one-dimensional
Luttinger liquids. SO(4) symmetry, which strongly constrains the phase diagram,
can explain coexistence regions between antiferromagnetic, superconducting, and
normal phases, as observed in (TMTSF)PF. We predict a sharp neutron
scattering resonance in superconducting samples.Comment: 5 pages, 3 figures; Added discussion of applicability of SO(4)
symmetry for strongly anisotropic Fermi liquids; Added reference
Magnetic Determination of under Accurate Alignment in (TMTSF)ClO
Cantilever magnetometry has been used to measure the upper critical magnetic
field of the quasi-one dimensional molecular organic superconductor
(TMTSF)ClO. From simultaneous resistivity and torque magnetization
experiments conducted under precise field alignment, at low
temperature is shown to reach 5T, nearly twice the Pauli paramagnetic limit
imposed on spin singlet superconductors. These results constitute the first
thermodynamic evidence for a large in this system and provide support
for spin triplet pairing in this unconventional superconductorComment: Submitted July 1, 2003, Accepted December 9, 2003, Physical Review
Letter
Recommended from our members
Safety and Pharmacokinetics of a Four Monoclonal Antibody Combination Against Botulinum C and D Neurotoxins.
Botulism is caused by botulinum neurotoxin (BoNT), the most poisonous substance known. BoNTs are also classified as Tier 1 biothreat agents due to their high potency and lethality. The existence of seven BoNT serotypes (A-G), which differ between 35% to 68% in amino acid sequence, necessitates the development of serotype specific countermeasures. We present results of a Phase 1 clinical study of an anti-toxin to BoNT serotypes C and D, NTM-1634, which consists of an equimolar mixture of four fully human IgG1 monoclonal antibodies (mAbs), each binding to non-overlapping epitopes on BoNT serotypes C and D resulting in potent toxin neutralization in rodents. This first-in-human study evaluated the safety and pharmacokinetics of escalating doses of NTM-1634 administered intravenously to healthy adults (NCT03046550). Three cohorts of eight healthy subjects received a single intravenous dose of NTM-1634 or placebo at 0.33 mg/kg, 0.66 mg/kg or 1 mg/kg. Follow-up examinations and pharmacokinetic evaluations were continued up to 121 days post-infusion. Subjects were monitored using physical examinations, hematology and chemistry blood tests, and electrocardiograms. Pharmacokinetic parameters were estimated using noncompartmental methods. The results demonstrated that the materials were safe and well-tolerated with the expected half-lives for human mAbs and with minimal anti-drug antibodies detected over the dose ranges and duration of the study
Interplay between pulsations and mass loss in the blue supergiant 55 Cygnus = HD 198478
Blue supergiant stars are known to display photometric and spectroscopic
variability that is suggested to be linked to stellar pulsations. Pulsational
activity in massive stars strongly depends on the star's evolutionary stage and
is assumed to be connected with mass-loss episodes, the appearance of
macroturbulent line broadening, and the formation of clumps in the wind. To
investigate a possible interplay between pulsations and mass-loss, we carried
out an observational campaign of the supergiant 55 Cyg over a period of five
years to search for photospheric activity and cyclic mass-loss variability in
the stellar wind. We modeled the H, He I, Si II and Si III lines using the
nonlocal thermal equilibrium atmosphere code FASTWIND and derived the
photospheric and wind parameters. In addition, we searched for variability in
the intensity and radial velocity of photospheric lines and performed a moment
analysis of the line profiles to derive frequencies and amplitudes of the
variations. The Halpha line varies with time in both intensity and shape,
displaying various types of profiles: P Cygni, pure emission, almost complete
absence, and double or multiple peaked. The star undergoes episodes of variable
mass-loss rates that change by a factor of 1.7-2 on different timescales. We
also observe changes in the ionization rate of Si II and determine a
multiperiodic oscillation in the He I absorption lines, with periods ranging
from a few hours to 22.5 days. We interpret the photospheric line variations in
terms of oscillations in p-, g-, and strange modes. We suggest that these
pulsations can lead to phases of enhanced mass loss. Furthermore, they can
mislead the determination of the stellar rotation. We classify the star as a
post-red supergiant, belonging to the group of alpha Cyg variables.Comment: 20 pages, 18 figures, 3 tables, accepted to Astronomy & Astrophysic
Do residents’ perceptions of being well-placed and objective presence of local amenities match? A case study in West Central Scotland, UK
Background:<p></p>
Recently there has been growing interest in how neighbourhood features, such as the provision of local facilities and amenities, influence residents’ health and well-being. Prior research has measured amenity provision through subjective measures (surveying residents’ perceptions) or objective (GIS mapping of distance) methods. The latter may provide a more accurate measure of physical access, but residents may not use local amenities if they do not perceive them as ‘local’. We believe both subjective and objective measures should be explored, and use West Central Scotland data to investigate correspondence between residents’ subjective assessments of how well-placed they are for everyday amenities (food stores, primary and secondary schools, libraries, pharmacies, public recreation), and objective GIS-modelled measures, and examine correspondence by various sub-groups.<p></p>
Methods:<p></p>
ArcMap was used to map the postal locations of ‘Transport, Health and Well-being 2010 Study’ respondents (n = 1760), and the six amenities, and the presence/absence of each of them within various straight-line and network buffers around respondents’ homes was recorded. SPSS was used to investigate whether objective presence of an amenity within a specified buffer was perceived by a respondent as being well-placed for that amenity. Kappa statistics were used to test agreement between measures for all respondents, and by sex, age, social class, area deprivation, car ownership, dog ownership, walking in the local area, and years lived in current home.<p></p>
Results:<p></p>
In general, there was poor agreement (Kappa <0.20) between perceptions of being well-placed for each facility and objective presence, within 800 m and 1000 m straight-line and network buffers, with the exception of pharmacies (at 1000 m straight-line) (Kappa: 0.21). Results varied between respondent sub-groups, with some showing better agreement than others. Amongst sub-groups, at 800 m straight-line buffers, the highest correspondence between subjective and objective measures was for pharmacies and primary schools, and at 1000 m, for pharmacies, primary schools and libraries. For road network buffers under 1000 m, agreement was generally poor.<p></p>
Conclusion:<p></p>
Respondents did not necessarily regard themselves as well-placed for specific amenities when these amenities were present within specified boundaries around their homes, with some exceptions; the picture is not clear-cut with varying findings between different amenities, buffers, and sub-groups
Triplet superconductivity in a one-dimensional ferromagnetic t-J model
In this paper we study the ground state phase diagram of a one-dimensional
model, at half-filling. In the large-bandwidth limit and for
ferromagnetic exchange with easy-plane anisotropy, a phase with gapless charge
and massive spin excitations, characterized by the coexistence of triplet
superconducting () and spin density wave () instabilities is
realized in the ground state. With reduction of the bandwidth, a transition
into an insulating phase showing properties of the spin-1/2 XY model takes
place. In the case of weakly anisotropic antiferromagnetic exchange the system
shows a long range dimerized (Peierls) ordering in the ground state. The
complete weak-coupling phase diagram of the model, including effects of the
on-site Hubbard interaction, is obtained
- …
