8,143 research outputs found
From 10 Kelvin to 10 TeraKelvin: Insights on the Interaction Between Cosmic Rays and Gas in Starbursts
Recent work has both illuminated and mystified our attempts to understand
cosmic rays (CRs) in starburst galaxies. I discuss my new research exploring
how CRs interact with the ISM in starbursts. Molecular clouds provide targets
for CR protons to produce pionic gamma rays and ionization, but those same
losses may shield the cloud interiors. In the densest molecular clouds, gamma
rays and Al-26 decay can provide ionization, at rates up to those in Milky Way
molecular clouds. I then consider the free-free absorption of low frequency
radio emission from starbursts, which I argue arises from many small, discrete
H II regions rather than from a "uniform slab" of ionized gas, whereas
synchrotron emission arises outside them. Finally, noting that the hot
superwind gas phase fills most of the volume of starbursts, I suggest that it
has turbulent-driven magnetic fields powered by supernovae, and that this phase
is where most synchrotron emission arises. I show how such a scenario could
explain the far-infrared radio correlation, in context of my previous work. A
big issue is that radio and gamma-ray observations imply CRs also must interact
with dense gas. Understanding how this happens requires a more advanced
understanding of turbulence and CR propagation.Comment: Conference proceedings for "Cosmic-ray induced phenomenology in
star-forming environments: Proceedings of the 2nd Session of the Sant Cugat
Forum of Astrophysics" (April 16-19, 2012). 16 pages, 5 figure
The stochastic resonance mechanism in the Aerosol Index dynamics
We consider Aerosol Index (AI) time-series extracted from TOMS archive for an area covering Italy . The missing of convergence in estimating the embedding dimension of the system and the inability of the Independent Component Analysis (ICA) in separating the fluctuations from deterministic component of the signals are evidences of an intrinsic link between the periodic behavior of AI and its fluctuations. We prove that these time series are well described by a stochastic dynamical model. Moreover, the principal peak in the power spectrum of these signals can be explained whereby a stochastic resonance, linking variable external factors, such as Sun-Earth radiation budget and local insolation, and fluctuations on smaller spatial and temporal scale due to internal weather and antrophic components
A catalogue of young runaway Hipparcos stars within 3kpc from the Sun
Traditionally runaway stars are O and B type stars with large peculiar
velocities.We want to extend this definition to young stars (up to ~50 Myr) of
any spectral type and identify those present in the Hipparcos catalogue
applying different selection criteria such as peculiar space velocities or
peculiar one-dimensional velocities. Runaway stars are important to study the
evolution of multiple star systems or star clusters as well as to identify
origins of neutron stars. We compile distances, proper motions, spectral types,
luminosity classes, V magnitudes and B-V colours and utilise evolutionary
models from different authors to obtain star ages and study a sample of 7663
young Hipparcos stars within 3 kpc from the Sun. Radial velocities are obtained
from the literature. We investigate the distributions of the peculiar spatial
velocity, the peculiar radial velocity as well as the peculiar tangential
velocity and its one-dimensional components and obtain runaway star
probabilities for each star in the sample. In addition, we look for stars that
are situated outside any OB association or OB cluster and the Galactic plane as
well as stars of which the velocity vector points away from the median velocity
vector of neighbouring stars or the surrounding local OB association/ cluster
although the absolute velocity might be small. We find a total of 2547 runaway
star candidates (with a contamination of normal Population I stars of 20 per
cent at most). Thus, after subtraction of those 20 per cent, the runaway
frequency among young stars is about 27 per cent. We compile a catalogue of
runaway stars which will be available via VizieR.Comment: 12 pages, 8 figures, 7 tables, accepted for publication in MNRAS old
version replaced due to change of the title after journal proof-readin
Enteric dysbiosis and fecal calprotectin expression in premature infants.
BackgroundPremature infants often develop enteric dysbiosis with a preponderance of Gammaproteobacteria, which has been related to adverse clinical outcomes. We investigated the relationship between increasing fecal Gammaproteobacteria and mucosal inflammation, measured by fecal calprotectin (FC).MethodsStool samples were collected from very-low-birth weight (VLBW) infants at ≤2, 3, and 4 weeks' postnatal age. Fecal microbiome was surveyed using polymerase chain reaction amplification of the V4 region of 16S ribosomal RNA, and FC was measured by enzyme immunoassay.ResultsWe enrolled 45 VLBW infants (gestation 27.9 ± 2.2 weeks, birth weight 1126 ± 208 g) and obtained stool samples at 9.9 ± 3, 20.7 ± 4.1, and 29.4 ± 4.9 days. FC was positively correlated with the genus Klebsiella (r = 0.207, p = 0.034) and its dominant amplicon sequence variant (r = 0.290, p = 0.003), but not with the relative abundance of total Gammaproteobacteria. Klebsiella colonized the gut in two distinct patterns: some infants started with low Klebsiella abundance and gained these bacteria over time, whereas others began with very high Klebsiella abundance.ConclusionIn premature infants, FC correlated with relative abundance of a specific pathobiont, Klebsiella, and not with that of the class Gammaproteobacteria. These findings indicate a need to define dysbiosis at genera or higher levels of resolution
Disequilibrium Carbon, Oxygen, and Nitrogen Chemistry in the Atmospheres of HD 189733b and HD 209458b
We have developed 1-D photochemical and thermochemical kinetics and diffusion
models for the transiting exoplanets HD 189733b and HD 209458b to study the
effects of disequilibrium chemistry on the atmospheric composition of "hot
Jupiters." Here we investigate the coupled chemistry of neutral carbon,
hydrogen, oxygen, and nitrogen species, and we compare the model results with
existing transit and eclipse observations. We find that the vertical profiles
of molecular constituents are significantly affected by transport-induced
quenching and photochemistry, particularly on cooler HD 189733b; however, the
warmer stratospheric temperatures on HD 209458b can help maintain
thermochemical equilibrium and reduce the effects of disequilibrium chemistry.
For both planets, the methane and ammonia mole fractions are found to be
enhanced over their equilibrium values at pressures of a few bar to less than a
mbar due to transport-induced quenching, but CH4 and NH3 are photochemically
removed at higher altitudes. Atomic species, unsaturated hydrocarbons
(particularly C2H2), some nitriles (particularly HCN), and radicals like OH,
CH3, and NH2 are enhanced overequilibrium predictions because of quenching and
photochemistry. In contrast, CO, H2O, N2, and CO2 more closely follow their
equilibrium profiles, except at pressures < 1 microbar, where CO, H2O, and N2
are photochemically destroyed and CO2 is produced before its eventual
high-altitude destruction. The enhanced abundances of HCN, CH4, and NH3 in
particular are expected to affect the spectral signatures and thermal profiles
HD 189733b and other, relatively cool, close-in transiting exoplanets. We
examine the sensitivity of our results to the assumed temperature structure and
eddy diffusion coefficientss and discuss further observational consequences of
these models.Comment: 40 pages, 16 figures, accepted for publication in Astrophysical
Journa
Search for Gravitational Wave Bursts from Soft Gamma Repeaters
We present the results of a LIGO search for short-duration gravitational
waves (GWs) associated with Soft Gamma Repeater (SGR) bursts. This is the first
search sensitive to neutron star f-modes, usually considered the most efficient
GW emitting modes. We find no evidence of GWs associated with any SGR burst in
a sample consisting of the 27 Dec. 2004 giant flare from SGR 1806-20 and 190
lesser events from SGR 1806-20 and SGR 1900+14 which occurred during the first
year of LIGO's fifth science run. GW strain upper limits and model-dependent GW
emission energy upper limits are estimated for individual bursts using a
variety of simulated waveforms. The unprecedented sensitivity of the detectors
allows us to set the most stringent limits on transient GW amplitudes published
to date. We find upper limit estimates on the model-dependent isotropic GW
emission energies (at a nominal distance of 10 kpc) between 3x10^45 and 9x10^52
erg depending on waveform type, detector antenna factors and noise
characteristics at the time of the burst. These upper limits are within the
theoretically predicted range of some SGR models.Comment: 6 pages, 1 Postscript figur
Implications For The Origin Of GRB 051103 From LIGO Observations
We present the results of a LIGO search for gravitational waves (GWs)
associated with GRB 051103, a short-duration hard-spectrum gamma-ray burst
(GRB) whose electromagnetically determined sky position is coincident with the
spiral galaxy M81, which is 3.6 Mpc from Earth. Possible progenitors for
short-hard GRBs include compact object mergers and soft gamma repeater (SGR)
giant flares. A merger progenitor would produce a characteristic GW signal that
should be detectable at the distance of M81, while GW emission from an SGR is
not expected to be detectable at that distance. We found no evidence of a GW
signal associated with GRB 051103. Assuming weakly beamed gamma-ray emission
with a jet semi-angle of 30 deg we exclude a binary neutron star merger in M81
as the progenitor with a confidence of 98%. Neutron star-black hole mergers are
excluded with > 99% confidence. If the event occurred in M81 our findings
support the the hypothesis that GRB 051103 was due to an SGR giant flare,
making it the most distant extragalactic magnetar observed to date.Comment: 8 pages, 3 figures. For a repository of data used in the publication,
go to: https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=15166 . Also see
the announcement for this paper on ligo.org at:
http://www.ligo.org/science/Publication-GRB051103/index.ph
Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects
In gravitational-wave detection, special emphasis is put onto searches that
focus on cosmic events detected by other types of astrophysical observatories.
The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical
telescopes and neutrino observatories, provide a trigger time for analyzing
gravitational wave data coincident with the event. In certain cases the
expected frequency range, source energetics, directional and progenitor
information is also available. Beyond allowing the recognition of gravitational
waveforms with amplitudes closer to the noise floor of the detector, these
triggered searches should also lead to rich science results even before the
onset of Advanced LIGO. In this paper we provide a broad review of LIGO's
astrophysically triggered searches and the sources they target
Green function techniques in the treatment of quantum transport at the molecular scale
The theoretical investigation of charge (and spin) transport at nanometer
length scales requires the use of advanced and powerful techniques able to deal
with the dynamical properties of the relevant physical systems, to explicitly
include out-of-equilibrium situations typical for electrical/heat transport as
well as to take into account interaction effects in a systematic way.
Equilibrium Green function techniques and their extension to non-equilibrium
situations via the Keldysh formalism build one of the pillars of current
state-of-the-art approaches to quantum transport which have been implemented in
both model Hamiltonian formulations and first-principle methodologies. We offer
a tutorial overview of the applications of Green functions to deal with some
fundamental aspects of charge transport at the nanoscale, mainly focusing on
applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references,
submitted to Springer series "Lecture Notes in Physics
Stacked Search for Gravitational Waves from the 2006 SGR 1900+14 Storm
We present the results of a LIGO search for short-duration gravitational
waves (GWs) associated with the 2006 March 29 SGR 1900+14 storm. A new search
method is used, "stacking'' the GW data around the times of individual
soft-gamma bursts in the storm to enhance sensitivity for models in which
multiple bursts are accompanied by GW emission. We assume that variation in the
time difference between burst electromagnetic emission and potential burst GW
emission is small relative to the GW signal duration, and we time-align GW
excess power time-frequency tilings containing individual burst triggers to
their corresponding electromagnetic emissions. We use two GW emission models in
our search: a fluence-weighted model and a flat (unweighted) model for the most
electromagnetically energetic bursts. We find no evidence of GWs associated
with either model. Model-dependent GW strain, isotropic GW emission energy
E_GW, and \gamma = E_GW / E_EM upper limits are estimated using a variety of
assumed waveforms. The stacking method allows us to set the most stringent
model-dependent limits on transient GW strain published to date. We find E_GW
upper limit estimates (at a nominal distance of 10 kpc) of between 2x10^45 erg
and 6x10^50 erg depending on waveform type. These limits are an order of
magnitude lower than upper limits published previously for this storm and
overlap with the range of electromagnetic energies emitted in SGR giant flares.Comment: 7 pages, 3 figure
- …
