614 research outputs found
Are There Diquarks in the Nucleon?
This work is devoted to the study of diquark correlations inside the nucleon.
We analyze some matrix elements which encode information about the
non-perturbative forces, in different color anti-triplet diquark channels. We
suggest a lattice calculation to check the quark-diquark picture and clarify
the role of instanton-mediated interactions. We study in detail the physical
properties of the 0+ diquark, using the Random Instanton Liquid Model. We find
that instanton forces are sufficiently strong to form a diquark bound-state,
with a mass of ~500 MeV, which is compatible with earlier estimates. We also
compute its electro-magnetic form factor and find that the diquark is a broad
object, with a size comparable with that of the proton.Comment: Final version, accepted for publication on Phys. Rev.
MONDO: A tracker for the characterization of secondary fast and ultrafast neutrons emitted in particle therapy
n/
Meson exchange and nucleon polarizabilities in the quark model
Modifications to the nucleon electric polarizability induced by pion and
sigma exchange in the q-q potentials are studied by means of sum rule
techniques within a non-relativistic quark model. Contributions from meson
exchange interactions are found to be small and in general reduce the quark
core polarizability for a number of hybrid and one-boson-exchange q-q models.
These results can be explained by the constraints that the baryonic spectrum
impose on the short range behavior of the mesonic interactions.Comment: 11 pages, 1 figure added, expanded discussio
Double Parton Distributions in Light-Front Constituent Quark Models
Double parton distribution functions (dPDF), accessible in high energy proton-proton and proton-nucleus collisions, encode information on how partons inside a proton are correlated among each other and could represent a tool to explore the 3D proton structure. In recent papers, double parton correlations have been studied in the valence quark region, by means of constituent quark models. This framework allows to understand clearly the dynamical origin of the correlations and to establish which, among the features of the results, are model independent. Recent relevant results, obtained in a relativistic light-front scheme, able to overcome some drawbacks of previous calculations, such as the poor support, will be presented. Peculiar transverse momentum correlations, generated by the correct treatment of the boosts, are obtained. The role of spin correlations will be also shown. In this covariant approach, the symmetries of the dPDFs are unambiguously reproduced. The study of the QCD evolution of the model results has been performed in the valence sector, showing that, in some cases, the effect of evolution does not cancel that of correlations
Nonperturbative versus perturbative effects in generalized parton distributions
Generalized parton distributions (GPDs) are studied at the hadronic
(nonperturbative) scale within different assumptions based on a relativistic
constituent quark model. In particular, by means of a meson-cloud model we
investigate the role of nonperturbative antiquark degrees of freedom and the
valence quark contribution. A QCD evolution of the obtained GPDs is used to add
perturbative effects and to investigate the GPDs' sensitivity to the
nonperturbative ingredients of the calculation at larger (experimental) scale.Comment: 17 pages, 10 figures; submitted to Phys. Rev.
Functional approach to the electromagnetic response function: the Longitudinal Channel
In this paper we address the (charge) longitudinal electromagnetic response
for a homogeneous system of nucleons interacting via meson exchanges in the
functional framework. This approach warrants consistency if the calculation is
carried on order-by-order in the mesonic loop expansion with RPA-dressed
mesonic propagators. At the 1-loop order and considering pion, rho and omega
exchanges we obtain a quenching of the response, in line with the experimental
results.Comment: RevTeX, 18 figures available upon request - to be published in
Physical Review
Characterisation of the secondary-neutron production in particle therapy treatments with the MONDO tracking detector
Particle Therapy (PT) is a non-invasive technique that exploits charged light ions for the irradiation of tumours that cannot be effectively treated with surgery or conventional radiotherapy. While the largest dose fraction is released to the tumour volume by the primary beam, a non-negligible amount of additional dose is due to the beam fragmentation that occurs along the path towards the target volume. In particular, the produced neutrons are particularly dangerous as they can release their energy far away from the treated area, increasing the risk of developing a radiogenic secondary malignant neoplasm after undergoing a treatment. A precise measurement of the neutron flux, energy spectrum and angular distributions is eagerly needed in order to improve the treatment planning system software, so as to predict the normal tissue toxicity in the target region and the risk of late complications in the whole body. The MONDO (MOnitor for Neutron Dose in hadrOntherapy) project is dedicated to the characterisation of the secondary ultra-fast neutrons ([20-400] MeV energy range) produced in PT. The neutron tracking system exploits the reconstruction of the recoil protons produced in two consecutive (n, p) elastic scattering interactions to measure simultaneously the neutron incoming direction and energy. The tracker active media is a matrix of thin squared scintillating fibers arranged in orthogonally oriented layers that are read out by a sensor (SBAM) based on SPAD (Single-Photon Avalanche Diode) detectors developed in collaboration with the Fondazione Bruno Kessler (FBK)
First Ex-Vivo Validation of a Radioguided Surgery Technique with beta- Radiation
Purpose: A radio-guided surgery technique with beta- -emitting radio-tracers
was suggested to overcome the effect of the large penetration of gamma
radiation. The feasibility studies in the case of brain tumors and abdominal
neuro-endocrine tumors were based on simulations starting from PET images with
several underlying assumptions. This paper reports, as proof-of-principle of
this technique, an ex-vivo test on a meningioma patient. This test allowed to
validate the whole chain, from the evaluation of the SUV of the tumor, to the
assumptions on the bio-distribution and the signal detection.
Methods: A patient affected by meningioma was administered 300 MBq of
90Y-DOTATOC. Several samples extracted from the meningioma and the nearby Dura
Mater were analyzed with a beta- probe designed specifically for this
radio-guided surgery technique. The observed signals were compared both with
the evaluation from the histology and with the Monte Carlo simulation.
Results: we obtained a large signal on the bulk tumor (105 cps) and a
significant signal on residuals of 0.2 ml (28 cps). We also show that
simulations predict correctly the observed yields and this allows us to
estimate that the healthy tissues would return negligible signals (~1 cps).
This test also demonstrated that the exposure of the medical staff is
negligible and that among the biological wastes only urine has a significant
activity.
Conclusions: This proof-of-principle test on a patient assessed that the
technique is feasible with negligible background to medical personnel and
confirmed that the expectations obtained with Monte Carlo simulations starting
from diagnostic PET images are correct.Comment: 17 pages, 4 Figs, Accepted by Physica Medic
Orbital Angular Momentum Parton Distributions in Light-Front Dynamics
We study the quark angular momentum distribution in the nucleon within a
light-front covariant quark model. Special emphasis is put into the orbital
angular momentum: a quantity which is very sensitive to the relativistic
treatment of the spin in a light-front dynamical approach. Discrepancies with
the predictions of the low-energy traditional quark models where relativistic
spin effects are neglected, are visible also after perturbative evolution to
higher momentum scales. Orbital angular momentum distributions and their
contribution to the spin sum rule are calculated for different phenomenological
mass operators and compared with the results of the MIT bag model.Comment: 14 pages; latex; 3 ps figure
Eikonal analysis of Coulomb distortion in quasi-elastic electron scattering
An eikonal expansion is used to provide systematic corrections to the eikonal
approximation through order , where is the wave number. Electron
wave functions are obtained for the Dirac equation with a Coulomb potential.
They are used to investigate distorted-wave matrix elements for quasi-elastic
electron scattering from a nucleus. A form of effective-momentum approximation
is obtained using trajectory-dependent eikonal phases and focusing factors.
Fixing the Coulomb distortion effects at the center of the nucleus, the
often-used ema approximation is recovered. Comparisons of these approximations
are made with full calculations using the electron eikonal wave functions. The
ema results are found to agree well with the full calculations.Comment: 12 pages, 6 Postscript figure
- …
