1,206 research outputs found

    Tunable Oscillations in the Purkinje Neuron

    Full text link
    In this paper, we study the dynamics of slow oscillations in Purkinje neurons in vitro, and derive a strong association with a forced parametric oscillator model. We demonstrate the precise rhythmicity of the oscillations in Purkinje neurons, as well as a dynamic tunability of this oscillation using a photo-switchable compound. We show that this slow oscillation can be induced in every Purkinje neuron, having periods ranging between 10-25 seconds. Starting from a Hodgkin-Huxley model, we also demonstrate that this oscillation can be externally modulated, and that the neurons will return to their intrinsic firing frequency after the forced oscillation is concluded. These results signify an additional functional role of tunable oscillations within the cerebellum, as well as a dynamic control of a time scale in the brain in the range of seconds.Comment: 12 pages, 5 figure

    In the shadow of fortress Europe? Impacts of European migration governance on Slovenia, Croatia and Macedonia

    Get PDF
    This article analyses European integration's effects on migration and border security governance in Slovenia, Croatia and Macedonia in the context of ‘governed interdependence’. We show how transgovernmental networks comprising national and EU actors, plus a range of other participants, blur the distinction between the domestic and international to enable interactions between domestic and international policy elites that transmit EU priorities into national policy. Governments are shown to be ‘willing pupils’ and ‘policy takers’, adapting to EU policy as a pre-condition for membership. This strengthened rather than weakened central state actors, particularly interior ministries. Thus, in a quintessentially ‘national’ policy area, there has been a re-scaling and re-constitution of migration and border security policy. To support this analysis, social network analysis is used to outline the composition of governance networks and analyse interactions and power relations therein

    A Signal Processing Analysis of Purkinje Cells in vitro

    Get PDF
    Cerebellar Purkinje cells in vitro fire recurrent sequences of Sodium and Calcium spikes. Here, we analyze the Purkinje cell using harmonic analysis, and our experiments reveal that its output signal is comprised of three distinct frequency bands, which are combined using Amplitude and Frequency Modulation (AM/FM). We find that the three characteristic frequencies – Sodium, Calcium and Switching – occur in various combinations in all waveforms observed using whole-cell current clamp recordings. We found that the Calcium frequency can display a frequency doubling of its frequency mode, and the Switching frequency can act as a possible generator of pauses that are typically seen in Purkinje output recordings. Using a reversibly photo-switchable kainate receptor agonist, we demonstrate the external modulation of the Calcium and Switching frequencies. These experiments and Fourier analysis suggest that the Purkinje cell can be understood as a harmonic signal oscillator, enabling a higher level of interpretation of Purkinje signaling based on modern signal processing techniques

    Optical Control of Metabotropic Glutamate Receptors

    Get PDF
    G-protein coupled receptors (GPCRs), the largest family of membrane signaling proteins, respond to neurotransmitters, hormones and small environmental molecules. The neuronal function of many GPCRs has been difficult to resolve because of an inability to gate them with subtype-specificity, spatial precision, speed and reversibility. To address this, we developed an approach for opto-chemical engineering native GPCRs. We applied this to the metabotropic glutamate receptors (mGluRs) to generate light-agonized and light-antagonized “LimGluRs”. The light-agonized “LimGluR2”, on which we focused, is fast, bistable, and supports multiple rounds of on/off switching. Light gates two of the primary neuronal functions of mGluR2: suppression of excitability and inhibition of neurotransmitter release. The light-antagonized “LimGluR2block” can be used to manipulate negative feedback of synaptically released glutamate on transmitter release. We generalize the optical control to two additional family members: mGluR3 and 6. The system works in rodent brain slice and in zebrafish in vivo, where we find that mGluR2 modulates the threshold for escape behavior. These light-gated mGluRs pave the way for determining the roles of mGluRs in synaptic plasticity, memory and disease

    Photoswitchable fatty acids enable optical control of TRPV1

    Get PDF
    Fatty acids (FAs) are not only essential components of cellular energy storage and structure, but play crucial roles in signalling. Here we present a toolkit of photoswitchable FA analogues (FAAzos) that incorporate an azobenzene photoswitch along the FA chain. By modifying the FAAzos to resemble capsaicin, we prepare a series of photolipids targeting the Vanilloid Receptor 1 (TRPV1),a non-selective cation channel known for its role in nociception. Several azo-capsaicin derivatives (AzCAs) emerge as photoswitchable agonists of TRPV1 that are relatively inactive in the dark and become active on irradiation with ultraviolet-A light. This effect can be rapidly reversed by irradiation with blue light and permits the robust optical control of dorsal root ganglion neurons and C-fibre nociceptors with precision timing and kinetics not available with any other technique. More generally, we expect that photolipids will find many applications in controlling biological pathways that rely on protein-lipid interactions

    Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages

    Get PDF
    Generalist and specialist species differ in the breadth of their ecological niches. Little is known about the niche width of obligate human pathogens. Here we analyzed a global collection of Mycobacterium tuberculosis lineage 4 clinical isolates, the most geographically widespread cause of human tuberculosis. We show that lineage 4 comprises globally distributed and geographically restricted sublineages, suggesting a distinction between generalists and specialists. Population genomic analyses showed that, whereas the majority of human T cell epitopes were conserved in all sublineages, the proportion of variable epitopes was higher in generalists. Our data further support a European origin for the most common generalist sublineage. Hence, the global success of lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human migration.We thank S. Lecher, S. Li and J. Zallet for technical support. Calculations were performed at the sciCORE scientific computing core facility at the University of Basel. This work was supported by the Swiss National Science Foundation (grants 310030_166687 (S.G.) and 320030_153442 (M.E.) and Swiss HIV Cohort Study grant 740 to L.F.), the European Research Council (309540-EVODRTB to S.G.), TB-PAN-NET (FP7-223681 to S.N.), PathoNgenTrace projects (FP7-278864-2 to S.N.), SystemsX.ch (S.G.), the German Center for Infection Research (DZIF; S.N.), the Novartis Foundation (S.G.), the Natural Science Foundation of China (91631301 to Q.G.), and the National Institute of Allergy and Infectious Diseases (5U01-AI069924-05) of the US National Institutes of Health (M.E.)

    From LAL-D to MASLD:Insights into the role of LAL and Kupffer cells in liver inflammation and lipid metabolism

    Get PDF
    Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent liver pathology worldwide, closely associated with obesity and metabolic disorders. Increasing evidence suggests that macrophages play a crucial role in the development of MASLD. Several human studies have shown an inverse correlation between circulating lysosomal acid lipase (LAL) activity and MASLD. LAL is the sole enzyme known to degrade cholesteryl esters (CE) and triacylglycerols in lysosomes. Consequently, these substrates accumulate when their enzymatic degradation is impaired due to LAL deficiency (LAL[sbnd]D). This study aimed to investigate the role of hepatic LAL activity and liver-resident macrophages (i.e., Kupffer cells (KC)) in MASLD. To this end, we analyzed lipid metabolism in hepatocyte-specific (hep)Lal−/− mice and depleted KC with clodronate treatment. When fed a high-fat/high-cholesterol diet (HF/HCD), hepLal−/− mice exhibited CE accumulation and an increased number of macrophages in the liver and significant hepatic inflammation. KC were depleted upon clodronate administration, whereas infiltrating/proliferating CD68-expressing macrophages were less affected. This led to exacerbated hepatic CE accumulation and dyslipidemia, as evidenced by increased LDL-cholesterol concentrations. Along with proteomic analysis of liver tissue, these findings indicate that hepatic LAL-D in HF/HCD-fed mice leads to macrophage infiltration into the liver and that KC depletion further exacerbates hepatic CE concentrations and dyslipidemia.</p

    A red-shifted photochromic sulfonylurea for the remote control of pancreatic beta cell function

    Get PDF
    Azobenzene photoresponsive elements can be installed on sulfonylureas, yielding optical control over pancreatic beta cell function and insulin release. An obstacle to such photopharmacological approaches remains the use of ultraviolet-blue illumination. Herein, we synthesize and test a novel yellow light-activated sulfonylurea based on a heterocyclic azobenzene bearing a push–pull system

    A red-shifted photochromic sulfonylurea for the remote control of pancreatic beta cell function

    Get PDF
    Azobenzene photoresponsive elements can be installed on sulfonylureas, yielding optical control over pancreatic beta cell function and insulin release. An obstacle to such photopharmacological approaches remains the use of ultraviolet-blue illumination. Herein, we synthesize and test a novel yellow light-activated sulfonylurea based on a heterocyclic azobenzene bearing a push–pull system

    Remote control of glucose homeostasis in vivo using photopharmacology

    Get PDF
    Photopharmacology describes the use of light to precisely deliver drug activity in space and time. Such approaches promise to improve drug specificity by reducing off-target effects. As a proof-of-concept, we have subjected the fourth generation photoswitchable sulfonylurea JB253 to comprehensive toxicology assessment, including mutagenicity and maximum/repeated tolerated dose studies, as well as in vivo testing in rodents. Here, we show that JB253 is well-tolerated with minimal mutagenicity and can be used to optically-control glucose homeostasis in anesthetized mice following delivery of blue light to the pancreas. These studies provide the first demonstration that photopharmacology may one day be applicable to the light-guided treatment of type 2 diabetes and other metabolic disease states in vivo in humans
    corecore