4,969 research outputs found
Molecular beam epitaxial growth of high-quality InSb on InP and GaAs substrates
Epitaxial layers of InSb were grown on InP and GaAs substrates by molecular beam epitaxy. The dependence of the epilayer quality on flux ratio, J sub Sb4/J sub In, was studied. Deviation from an optimum value of J sub Sb4/J sub In (approx. 2) during growth led to deterioration in the surface morphology and the electrical and crystalline qualities of the films. Room temperature electron mobilities as high as 70,000 and 53,000 sq cm /V-s were measured in InSb layers grown on InP and GaAs substrates, respectively. Unlike the previous results, the conductivity in these films is n-type even at T = 13 K, and no degradation of the electron mobility due to the high density of dislocations was observed. The measured electron mobilities (and carrier concentrations) at 77 K in InSb layers grown on InP and GaAs substrates are 110,000 sq cm/V-s (3 x 10(15) cm(-3)) and 55,000 sq cm/V-s (4.95 x 10(15) cm(-3)), respectively, suggesting their application to electronic devices at cryogenic temperatures
Organopalladium catalyst on S-terminated GaAs(001)-(2×6) surface
Organopalladium molecules, such as Pd(CH3COO)2 ({Pd}), immobilized on the S-terminated GaAs(001), termed GaAs–S–{Pd} have high catalytic activity and cycle durability in the Mizoroki–Heck reaction. It is thought that the presence of Ga–S bonds in the single atomic layer S-termination is essential for these catalytic properties despite the much higher thickness (~100 nm) of the {Pd} films. In this study, the authors demonstrate the retention of Ga–S bonds in ultrathin GaAs–S–{Pd} by using reflection high-energy electron diffraction and scanning tunneling microscopy (STM). The ultrathin GaAs–S–{Pd} was prepared by using a vapor-deposition technique. Deposited {Pd} was observed as ~1 nm dotlike structures with STM. The adsorption rate of {Pd} was also investigated
Rescue with an anti-inflammatory peptide of chickens infected H5N1 avian flu
Chickens suffering from avian flu caused by H5N1 influenza virus are destined to die within 2 days due to a systemic inflammatory response. Since HVJ infection (1,2) and influenza virus infection (3,4) cause infected cells to activate homologous serum complement, the systemic inflammatory response elicited could be attributed to the unlimited generation of C5a anaphylatoxin of the complement system, which is a causative peptide of serious inflammation. In monkeys inoculated with a lethal dose of LPS (4 mg/kg body weight), inhibition of C5a by an inhibitory peptide termed AcPepA (5) rescued these animals from serious septic shock which would have resulted in death within a day (6). Therefore, we tested whether AcPepA could also have a beneficial effect on chickens with bird flu. On another front, enhanced production of endothelin-1 (ET-1) and the activation of mast cells (MCs) have been implicated in granulocyte sequestration (7). An endothelin receptor derived antisense homology box peptide (8) designated ETR-P1/fl was shown to antagonize endothelin A receptor (ET-A receptor) (9) and reduce such inflammatory responses as endotoxin-shock (10) and hemorrhagic shock (11), thereby suppressing histamine release in the circulation (12). Thus, we also administered ETR-P1/fl to bird flu chickens expecting suppression of a systemic inflammatory response
A New Analysis Method for Simulations Using Node Categorizations
Most research concerning the influence of network structure on phenomena
taking place on the network focus on relationships between global statistics of
the network structure and characteristic properties of those phenomena, even
though local structure has a significant effect on the dynamics of some
phenomena. In the present paper, we propose a new analysis method for phenomena
on networks based on a categorization of nodes. First, local statistics such as
the average path length and the clustering coefficient for a node are
calculated and assigned to the respective node. Then, the nodes are categorized
using the self-organizing map (SOM) algorithm. Characteristic properties of the
phenomena of interest are visualized for each category of nodes. The validity
of our method is demonstrated using the results of two simulation models. The
proposed method is useful as a research tool to understand the behavior of
networks, in particular, for the large-scale networks that existing
visualization techniques cannot work well.Comment: 9 pages, 8 figures. This paper will be published in Social Network
Analysis and Mining(www.springerlink.com
Formation of Protoplanets from Massive Planetesimals in Binary Systems
More than half of stars reside in binary or multiple star systems and many
planets have been found in binary systems. From theoretical point of view,
however, whether or not the planetary formation proceeds in a binary system is
a very complex problem, because secular perturbation from the companion star
can easily stir up the eccentricity of the planetesimals and cause
high-velocity, destructive collisions between planetesimals. Early stage of
planetary formation process in binary systems has been studied by restricted
three-body approach with gas drag and it is commonly accepted that accretion of
planetesimals can proceed due to orbital phasing by gas drag. However, the gas
drag becomes less effective as the planetesimals become massive. Therefore it
is still uncertain whether the collision velocity remains small and planetary
accretion can proceed, once the planetesimals become massive. We performed {\it
N}-body simulations of planetary formation in binary systems starting from
massive planetesimals whose size is about 100-500 km. We found that the
eccentricity vectors of planetesimals quickly converge to the forced
eccentricity due to the coupling of the perturbation of the companion and the
mutual interaction of planetesimals if the initial disk model is sufficiently
wide in radial distribution. This convergence decreases the collision velocity
and as a result accretion can proceed much in the same way as in isolated
systems. The basic processes of the planetary formation, such as runaway growth
and oligarchic growth and final configuration of the protoplanets are
essentially the same in binary systems and single star systems, at least in the
late stage where the effect of gas drag is small.Comment: 26pages, 11 figures. ApJ accepte
Prediction of pile response to lateral spreading by 3-D soil-water coupled dynamic analysis: shaking in the direction of ground flow
Numerical predictions of a series of shake table tests are presented in this paper in order to examine the accuracy of a 3-D effective stress analysis in predicting the behavior of piles subjected to liquefaction-induced ground flow. For a rigorous assessment of the analysis, “Class B” predictions are reported in which numerical and constitutive model parameters were set before the event, and the target motion was
used as an input motion in the analysis. Modeling of the stress-strain behavior of sand, identification of the initial stress state and critical numerical parameters in the 3-D seismic analysis of the soil-pile system are discussed in detail. Combined effects of kinematic loads due to large lateral ground movement and inertial loads on pile behavior are examined through a series of tests using different shaking direction, excitation amplitude and mass of the footing (load from the superstructure). By and large, very good agreement was obtained between the predicted and measured peak
responses of the pile foundation, whereas the analysis underestimated the displacements of the sheet-pile wall and was less accurate in predicting the residual
deformation of the foundation piles. Reasons for these discrepancies and limitations of the analysis method are discussed
Evidence of Luttinger liquid behavior in one-dimensional dipolar quantum gases
The ground state and structure of a one-dimensional Bose gas with dipolar
repulsions is investigated at zero temperature by a combined Reptation Quantum
Monte Carlo (RQMC) and bosonization approach. A non trivial Luttinger-liquid
behavior emerges in a wide range of intermediate densities, evolving into a
Tonks-Girardeau gas at low density and into a classical quasi-ordered state at
high density. The density dependence of the Luttinger exponent is extracted
from the numerical data, providing analytical predictions for observable
quantities, such as the structure factor and the momentum distribution. We
discuss the accessibility of such predictions in current experiments with
ultracold atomic and molecular gases.Comment: 4 pages, 3 EPS figures, Revtex
Physics at the Linear Collider
The physics at the planned colliders is discussed around three main
topics corresponding to different manifestations of symmetry breaking:
physics in the no Higgs scenario, studies of the properties of the Higgs and
precision tests of SUSY. A comparison with the LHC is made for all these cases.
The mode of the linear collider will also be reviewed.Comment: 31 pages, 12 figures. Invited talk given at the Fifth Workshop on
High Energy Physics Phenomenology, Inter-University Centre for Astronomy and
Astrophysics, Pune, India, January 12 - 26, 199
- …
