269 research outputs found

    The Expanded Bead Size of Corneal C-Nerve Fibers Visualized by Corneal Confocal Microscopy Is Associated with Slow Conduction Velocity of the Peripheral Nerves in Patients with Type 2 Diabetes Mellitus.

    Get PDF
    This is the final version of the article. Available from Hindawi Publishing Corporation via the DOI in this record.This study aims to establish the corneal nerve fiber (CNF) morphological alterations in a large cohort of type 2 diabetic patients and to investigate the association between the bead size, a novel parameter representing composite of accumulated mitochondria, glycogen particles, and vesicles in CNF, and the neurophysiological dysfunctions of the peripheral nerves. 162 type 2 diabetic patients and 45 healthy control subjects were studied in detail with a battery of clinical and neurological examinations and corneal confocal microscopy. Compared with controls, patients had abnormal CNF parameters. In particular the patients had reduced density and length of CNF and beading frequency and increased bead size. Alterations in CNF parameters were significant even in patients without neuropathy. The HbA1c levels were tightly associated with the bead size, which was inversely related to the motor and sensory nerve conduction velocity (NCV) and to the distal latency period of the median nerve positively. The CNF density and length positively correlated with the NCV and amplitude. The hyperglycemia-induced expansion of beads in CNF might be a predictor of slow NCV in peripheral nerves in type 2 diabetic patients

    Nuclear resonant scattering experiment with fast time response: new scheme for observation of 229m^{229\rm m}Th radiative decay

    Full text link
    Nuclear resonant excitation of the 29.19-keV level in 229^{229}Th with high-brilliance synchrotron- radiation and detection of its decay signal, are proposed with the aim of populating the extremely low-energy isomeric state of 229^{229}Th.The proposed experiment, known as nuclear resonant scattering (NRS), has the merit of being free from uncertainties about the isomer level energy. However, it requires higher time resolution and shorter tail in the response function of the detector than that of conventional NRS experiments because of the short lifetime of the 29.19-keV state. We have fabricated an X-ray detector system which has a time resolution of 56 ps and a shorter tail function than the previously reported one. We have demonstrated an NRS experiment with the 26.27-keV nuclear level of 201^{201}Hg for feasibility assessment of the 229^{229}Th experiment. The NRS signal is clearly distinct from the prompt electronic scattering signal by the implemented detector system. The half-life of the 26.27-keV state of 201^{201}Hg is determined as 629 ±\pm 18 ps which is better precision by a factor three than that reported to date.Comment: 11 pages, 5 figure

    Fast x-ray detector system with simultaneous measurement of timing and energy for a single photon

    Get PDF
    We developed a fast X-ray detector system for nuclear resonant scattering (NRS) experiments. Our system employs silicon avalanche photo-diode (Si-APD) as a fast X-ray sensor. The system is able to acquire both timing and energy of a single X-ray photon simultaneously in a high rate condition, 106 counts per second for one Si-APD. The performance of the system was investigated in SPring-8, a synchrotron radiation facility in Japan. Good time resolution of 120 ps (FWHM) was achieved with a slight tail distribution in the time spectrum by a level of 10-9 at 1 ns apart from the peak. Using this system, we successfully observed the NRS from the 26.27-keV level of mercury-201, which has a half-life of 630(50) ps. We also demonstrated the reduction of background events caused by radioactive decays in a radioactive sample by discriminating photon energy

    Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition.

    Get PDF
    Cellular senescence is a widespread stress response and is widely considered to be an alternative cancer therapeutic goal. Unlike apoptosis, senescence is composed of a diverse set of subphenotypes, depending on which of its associated effector programs are engaged. Here we establish a simple and sensitive cell-based prosenescence screen with detailed validation assays. We characterize the screen using a focused tool compound kinase inhibitor library. We identify a series of compounds that induce different types of senescence, including a unique phenotype associated with irregularly shaped nuclei and the progressive accumulation of G1 tetraploidy in human diploid fibroblasts. Downstream analyses show that all of the compounds that induce tetraploid senescence inhibit Aurora kinase B (AURKB). AURKB is the catalytic component of the chromosome passenger complex, which is involved in correct chromosome alignment and segregation, the spindle assembly checkpoint, and cytokinesis. Although aberrant mitosis and senescence have been linked, a specific characterization of AURKB in the context of senescence is still required. This proof-of-principle study suggests that our protocol is capable of amplifying tetraploid senescence, which can be observed in only a small population of oncogenic RAS-induced senescence, and provides additional justification for AURKB as a cancer therapeutic target.This work was supported by the University of Cambridge, Cancer Research UK, Hutchison Whampoa; Cancer Research UK grants A6691 and A9892 (M.N., N.K., C.J.T., D.C.B., C.J.C., L.S.G, and M.S.); a fellowship from the Uehara Memorial Foundation (M.S.).This is the author accepted manuscript. The final version is available from the American Society for Cell Biology via http://dx.doi.org/10.1091/mbc.E15-01-000

    Suppression of the optical crosstalk in a multi-channel silicon photomultiplier array

    Get PDF
    We propose and study a method of optical crosstalk suppression for silicon photomultipliers (SiPMs) using optical filters. We demonstrate that attaching absorptive visible bandpass filters to the SiPM can substantially reduce the optical crosstalk. Measurements suggest that the absorption of near infrared light is important to achieve this suppression. The proposed technique can be easily applied to suppress the optical crosstalk in SiPMs in cases where filtering near infrared light is compatible with the application

    Energy response of X-rays under high flux conditions using a thin APD for the energy range of 6–33 keV

    Get PDF
    This paper reports on the demonstration of a high-rate energy measurement technique using a thin depletion layer silicon avalanche photodiode (Si-APD). A dedicated amplitude-to-time converter is developed to realize simultaneous energy and timing measurement in a high rate condition. The energy response of the system is systematically studied by using monochromatic X-ray beam with an incident energy ranging from 6 to 33 keV. The obtained energy spectra contain clear peaks and tail distributions. The peak fraction monotonously decreases as the incident photon energy increases. This phenomenon can be explained by considering the distribution of the energy deposit in silicon, which is investigated by using a Monte Carlo simulation

    Ice Nucleating Particle Connections to Regional Argentinian Land Surface Emissions and Weather During the Cloud, Aerosol, and Complex Terrain Interactions Experiment

    Get PDF
    Here, we present a multi-season study of ice-nucleating particles (INPs) active via the immersion freezing mechanism, which took place in north-central Argentina, a worldwide hotspot for mesoscale convective storms. INPs were measured untreated, after heating to 95°C, and after hydrogen peroxide digestion. No seasonal cycle of INP concentrations was observed. Heat labile INPs, which we define as “biological” herein, dominated the population active at −5 to −20°C, while non-heat-labile organic INPs (decomposed by peroxide) dominated at lower temperatures, from −20 to −28°C. Inorganic INPs (remaining after peroxide digestion), were minor contributors to the overall INP activity. Biological INP concentration active around −12°C peaked during rain events and under high relative humidity, reflecting emission mechanisms independent of the background aerosol concentration. The ratio of non-heat-labile organic and inorganic INPs was generally constant, suggesting they originated from the same source, presumably from regional arable topsoil based on air mass histories. Single particle mass spectrometry showed that soil particles aerosolized from a regionally common agricultural topsoil contained known mineral INP sources (K-feldspar and illite) as well as a significant organic component. The INP activity observed in this study correlates well with agricultural soil INP activities from this and other regions of the world, suggesting that the observed INP spectra might be typical of many arable landscapes. These results demonstrate the strong influence of regional continental landscapes, emitting INPs of types that are not yet well represented in global models

    Control of daughter centriole formation by the pericentriolar material

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Cell Biology 10 (2008): 322-328, doi:10.1038/ncb1694.Controlling the number of its centrioles is vital for the cell as supernumerary centrioles result in multipolar mitosis and genomic instability. Normally, just one daughter centriole forms on each mature (mother) centriole; however, a mother centriole can produce multiple daughters within a single cell cycle. The mechanisms that prevent centriole ‘overduplication’ are poorly understood. Here we use laser microsurgery to test the hypothesis that attachment of the daughter centriole to the wall of the mother inhibits formation of additional daughters. We show that physical removal of the daughter induces reduplication of the mother in Sarrested cells. Under conditions when multiple daughters simultaneously form on a single mother, all of these daughters must be removed to induce reduplication. Intriguingly, the number of daughter centrioles that form during reduplication does not always match the number of ablated daughter centrioles. We also find that exaggeration of the pericentriolar material (PCM) via overexpression of the PCM protein pericentrin in S-arrested CHO cells induces formation of numerous daughter centrioles. We propose that that the size of the PCM cloud associated with the mother centriole restricts the number of daughters that can form simultaneously.This work was supported by grants from the National Institutes of Health (GM GM59363) and the Human Frontiers Science Program (RGP0064). Construction of our laser microsurgery workstation was supported in part by a fellowship from Nikon/Marine Biological Laboratory (A.K.)

    Role of CAP350 in Centriolar Tubule Stability and Centriole Assembly

    Get PDF
    BACKGROUND: Centrioles are microtubule-based cylindrical structures composed of nine triplet tubules and are required for the formation of the centrosome, flagella and cilia. Despite theirs importance, centriole biogenesis is poorly understood. Centrosome duplication is initiated at the G1/S transition by the sequential recruitment of a set of conserved proteins under the control of the kinase Plk4. Subsequently, the procentriole is assembled by the polymerization of centriolar tubules via an unknown mechanism involving several tubulin paralogs. METHODOLOGY/PRINCIPAL FINDINGS: Here, we developed a cellular assay to study centrosome duplication and procentriole stability based on its sensitivity to the microtubule-depolymerizing drug nocodazole. By using RNA interference experiments, we show that the stability of growing procentrioles is regulated by the microtubule-stabilizing protein CAP350, independently of hSAS-6 and CPAP which initiate procentriole growth. Furthermore, our analysis reveals the critical role of centriolar tubule stability for an efficient procentriole growth. CONCLUSIONS/SIGNIFICANCE: CAP350 belongs to a new class of proteins which associate and stabilize centriolar tubules to control centriole duplication
    corecore