249 research outputs found
Optimization of spatiotemporally fractionated radiotherapy treatments with bounds on the achievable benefit
Spatiotemporal fractionation schemes, that is, treatments delivering
different dose distributions in different fractions, may lower treatment side
effects without compromising tumor control. This is achieved by
hypofractionating parts of the tumor while delivering approximately uniformly
fractionated doses to the healthy tissue. Optimization of such treatments is
based on biologically effective dose (BED), which leads to computationally
challenging nonconvex optimization problems. Current optimization methods yield
only locally optimal plans, and it has been unclear whether these are close to
the global optimum. We present an optimization model to compute rigorous bounds
on the normal tissue BED reduction achievable by such plans.
The approach is demonstrated on liver tumors, where the primary goal is to
reduce mean liver BED without compromising other treatment objectives. First a
uniformly fractionated reference plan is computed using convex optimization.
Then a nonconvex quadratically constrained quadratic programming model is
solved to local optimality to compute a spatiotemporally fractionated plan that
minimizes mean liver BED subject to the constraints that the plan is no worse
than the reference plan with respect to all other planning goals. Finally, we
derive a convex relaxation of the second model in the form of a semidefinite
programming problem, which provides a lower bound on the lowest achievable mean
liver BED.
The method is presented on 5 cases with distinct geometries. The computed
spatiotemporal plans achieve 12-35% mean liver BED reduction over the reference
plans, which corresponds to 79-97% of the gap between the reference mean liver
BEDs and our lower bounds. This indicates that spatiotemporal treatments can
achieve substantial reduction in normal tissue BED, and that local optimization
provides plans that are close to realizing the maximum potential benefit
Is there a Pronounced Giant Dipole Resonance in ^4He?
A four-nucleon calculation of the total ^4He photodisintegration cross
section is performed. The full final-state interaction is taken into account
for the first time. This is achieved via the method of the Lorentz integral
transform. Semi-realistic NN interactions are employed. Different from the
known partial two-body ^4He(\gamma,n)^3He and ^4He(\gamma,p)^3H cross sections
our total cross section exhibits a pronounced giant resonance. Thus, in
contrast to older data, we predict quite a strong contribution of
the channel at the giant resonance peak energy.Comment: 10 pages, Latex (REVTEX), 4 Postscript figures, to appear in Phys.
Rev. Let
Comment on ``Large-space shell-model calculations for light nuclei''
In a recent publication Zheng, Vary, and Barrett reproduced the negative
quadrupole moment of Li-6 and the low-lying positive-parity states of He-5 by
using a no-core shell model. In this Comment we question the meaning of these
results by pointing out that the model used is inadequate for the reproduction
of these properties.Comment: Latex with Revtex, 1 postscript figure in separate fil
Fluent processing leads to positive stimulus evaluations even when base rates suggest negative evaluations
Fluency is the experienced ease of ongoing mental operations, which increases the subjective positivity of stimuli attributes. This may happen because fluency is inherently positive. Alternatively, people may learn the meaning of fluency from contingencies within judgment-contexts. We test pseudocontingencies (PCs) as a mechanism through which fluency's meaning is learned. PCs are inferred correlations between two attributes due to the observation of their jointly skewed base rates – people relate what is frequent in one attribute to what is frequent in the other. Using online seller evaluations as the dependent variable, we manipulated base rates of seller name-fluency and seller reputation, creating conditions where name-fluency aligned positively or negatively with reputation. However, participants evaluated high-fluency name sellers more positively across base-rate conditions, although we observed negative PCs between seller reputation and a fluency-neutral dimension in a follow-up study. We discuss the implications for the debate regarding fluency's positive vs. malleable nature.info:eu-repo/semantics/acceptedVersio
Metacognition as Evidence for Evidentialism
Metacognition is the monitoring and controlling of cognitive processes. I examine the role of metacognition in ‘ordinary retrieval cases’, cases in which it is intuitive that via recollection the subject has a justified belief. Drawing on psychological research on metacognition, I argue that evidentialism has a unique, accurate prediction in each ordinary retrieval case: the subject has evidence for the proposition she justifiedly believes. But, I argue, process reliabilism has no unique, accurate predictions in these cases. I conclude that ordinary retrieval cases better support evidentialism than process reliabilism. This conclusion challenges several common assumptions. One is that non-evidentialism alone allows for a naturalized epistemology, i.e., an epistemology that is fully in accordance with scientific research and methodology. Another is that process reliabilism fares much better than evidentialism in the epistemology of memory
Mikrokurse
In den Lehrplänen einiger Bundesländer gibt es noch keinen eigenständigen Themenbereich Teilchenphysik. Für diesen Fall sind die hier vorgestellten Mikrokurse zusammengestellt worden. Alle Kurse schlagen auf originelle Weise eine Brücke von klassischen Lehrplanthemen zu aktuellen Forschungsgegenständen. Denn viele der im Physikunterricht behandelten Themen lassen sich leicht um einen Bezug zur modernen Physik und insbesondere der Teilchenphysik ergänzen. Der zeitliche Bedarf für die Behandlung eines Kurses beträgt ca. ein bis zwei Unterrichtsstunden. Vorkenntnisse zur Teilchenphysik sind kaum notwendig. Die Mikrokurse können und sollen deshalb auch gerade dort eingesetzt werden, wo nur wenig Zeit zur Verfügung steht oder das Thema Teilchenphysik nicht im Lehrplan verankert ist. Zu jedem Kurs werden Einsatzmöglichkeiten und wünschenswerte Vorkenntnisse der Schüler:innen angegeben. Auf mögliche Erweiterungen und Vertiefungen wird hingewiesen
Spin Flip Probabilities in 208-Pb Measured with 200 MeV Protons
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
Neural parameters estimation for brain tumor growth modeling
Understanding the dynamics of brain tumor progression is essential for
optimal treatment planning. Cast in a mathematical formulation, it is typically
viewed as evaluation of a system of partial differential equations, wherein the
physiological processes that govern the growth of the tumor are considered. To
personalize the model, i.e. find a relevant set of parameters, with respect to
the tumor dynamics of a particular patient, the model is informed from
empirical data, e.g., medical images obtained from diagnostic modalities, such
as magnetic-resonance imaging. Existing model-observation coupling schemes
require a large number of forward integrations of the biophysical model and
rely on simplifying assumption on the functional form, linking the output of
the model with the image information. In this work, we propose a learning-based
technique for the estimation of tumor growth model parameters from medical
scans. The technique allows for explicit evaluation of the posterior
distribution of the parameters by sequentially training a mixture-density
network, relaxing the constraint on the functional form and reducing the number
of samples necessary to propagate through the forward model for the estimation.
We test the method on synthetic and real scans of rats injected with brain
tumors to calibrate the model and to predict tumor progression
The Epistemic Status of Processing Fluency as Source for Judgments of Truth
This article combines findings from cognitive psychology on the role of processing fluency in truth judgments with epistemological theory on justification of belief. We first review evidence that repeated exposure to a statement increases the subjective ease with which that statement is processed. This increased processing fluency, in turn, increases the probability that the statement is judged to be true. The basic question discussed here is whether the use of processing fluency as a cue to truth is epistemically justified. In the present analysis, based on Bayes’ Theorem, we adopt the reliable-process account of justification presented by Goldman (1986) and show that fluency is a reliable cue to truth, under the assumption that the majority of statements one has been exposed to are true. In the final section, we broaden the scope of this analysis and discuss how processing fluency as a potentially universal cue to judged truth may contribute to cultural differences in commonsense beliefs
- …
