5,202 research outputs found
Excitation of stellar p-modes by turbulent convection: 1. Theoretical formulation
Stochatic excitation of stellar oscillations by turbulent convection is
investigated and an expression for the power injected into the oscillations by
the turbulent convection of the outer layers is derived which takes into
account excitation through turbulent Reynolds stresses and turbulent entropy
fluctuations. This formulation generalizes results from previous works and is
built so as to enable investigations of various possible spatial and temporal
spectra of stellar turbulent convection. For the Reynolds stress contribution
and assuming the Kolmogorov spectrum we obtain a similar formulation than those
derived by previous authors. The entropy contribution to excitation is found to
originate from the advection of the Eulerian entropy fluctuations by the
turbulent velocity field. Numerical computations in the solar case in a
companion paper indicate that the entropy source term is dominant over Reynold
stress contribution to mode excitation, except at high frequencies.Comment: 14 pages, accepted for publication in A&
The chaotic behavior of the black hole system GRS 1915+105
A modified non-linear time series analysis technique, which computes the
correlation dimension , is used to analyze the X-ray light curves of the
black hole system GRS 1915+105 in all twelve temporal classes. For four of
these temporal classes saturates to which indicates that
the underlying dynamical mechanism is a low dimensional chaotic system. Of the
other eight classes, three show stochastic behavior while five show deviation
from randomness. The light curves for four classes which depict chaotic
behavior have the smallest ratio of the expected Poisson noise to the
variability () while those for the three classes which depict
stochastic behavior is the highest (). This suggests that the temporal
behavior of the black hole system is governed by a low dimensional chaotic
system, whose nature is detectable only when the Poisson fluctuations are much
smaller than the variability.Comment: Accepted for publication in Astrophysical Journa
Refinement Type Inference via Horn Constraint Optimization
We propose a novel method for inferring refinement types of higher-order
functional programs. The main advantage of the proposed method is that it can
infer maximally preferred (i.e., Pareto optimal) refinement types with respect
to a user-specified preference order. The flexible optimization of refinement
types enabled by the proposed method paves the way for interesting
applications, such as inferring most-general characterization of inputs for
which a given program satisfies (or violates) a given safety (or termination)
property. Our method reduces such a type optimization problem to a Horn
constraint optimization problem by using a new refinement type system that can
flexibly reason about non-determinism in programs. Our method then solves the
constraint optimization problem by repeatedly improving a current solution
until convergence via template-based invariant generation. We have implemented
a prototype inference system based on our method, and obtained promising
results in preliminary experiments.Comment: 19 page
Impact of neutron star oscillations on the accelerating electric field in the polar cap of pulsar: or could we see oscillations of the neutron star after the glitch in pulsar?
Pulsar "standard model", that considers a pulsar as a rotating magnetized
conducting sphere surrounded by plasma, is generalized to the case of
oscillating star. We developed an algorithm for calculation of the
Goldreich-Julian charge density for this case. We consider distortion of the
accelerating zone in the polar cap of pulsar by neutron star oscillations. It
is shown that for oscillation modes with high harmonic numbers (l,m) changes in
the Goldreich-Julian charge density caused by pulsations of neutron star could
lead to significant altering of an accelerating electric field in the polar cap
of pulsar. In the moderately optimistic scenario, that assumes excitation of
the neutron star oscillations by glitches, it could be possible to detect
altering of the pulsar radioemission due to modulation of the accelerating
field.Comment: 7 pages, 8 figures. Presented at the conference "Isolated Neutron
Stars: from the Interior to the Surface", London, April 24-28, 2006; to
appear in Astrophysics and Space Scienc
Seismology of beta Cephei stars: differentially-rotating models for interpreting the oscillation spectrum of nu-Eridani
A method for the asteroseismic analysis of beta Cephei stars is presented and
applied to the star nu Eridani. The method is based on the analysis of
rotational splittings, and their asymmetries using differentially-rotating
asteroseismic models. Models with masses around 7.13 M_sun, and ages around
14.9 Myr, were found to fit better 10 of the 14 observed frequencies, which
were identified as the fundamental radial mode and the three L=1 triplets g, p,
and p. The splittings and aymmetries found for these modes recover those
provided in the literature, except for p. For this last mode, all its
non-axysimmetric components are predicted by the models. Moreover, opposite
signs of the observed and predicted splitting asymmetries are found. If
identification is confirmed, this can be a very interesting source of
information about the internal rotation profile, in particular in the outer
regions of the star.
In general, the seismic models which include a description for shellular
rotation yield slightly better results as compared with those given by
uniformly-rotating models. Furthermore, we show that asymmetries are quite
dependent on the overshooting of the convective core, which make the present
technique suitable for testing the theories describing the angular momentum
redistribution and chemical mixing due to rotationally-induced turbulence.Comment: 11 pages, 9 figures, 8 tables. ApJ (in press
Study of sdO models. Pulsation Analysis
We have explored the possibility of driving pulsation modes in models of sdO
stars in which the effects of element diffusion, gravitational settling and
radiative levitation have been neglected so that the distribution of iron-peak
elements remains uniform throughout the evolution. The stability of these
models was determined using a non-adiabatic oscillations code. We analysed 27
sdO models from 16 different evolutionary sequences and discovered the first
ever sdO models capable of driving high-radial order g-modes. In one model, the
driving is by a classical kappa-mechanism due to the opacity bump from
iron-peak elements at temperature ~200,000 K. In a second model, the driving
result from the combined action of kappa-mechanisms operating in three distinct
regions of the star: (i) a carbon-oxygen partial ionization zone at temperature
~2 10^6 K, (ii) a deeper region at temperature ~2 10^7 K, which we attribute to
ionization of argon, and (iii) at the transition from radiative to conductive
opacity in the core of the star.Comment: 13 pages, 19 figures, accepted for publication in MNRAS, 2009
September 1
A novel type of proximity focusing RICH counter with multiple refractive index aerogel radiator
A proximity focusing ring imaging Cherenkov detector, with the radiator
consisting of two or more aerogel layers of different refractive indices, has
been tested in 1-4 GeV/c pion beams at KEK. Essentially, a multiple refractive
index aerogel radiator allows for an increase in Cherenkov photon yield on
account of the increase in overall radiator thickness, while avoiding the
simultaneous degradation in single photon angular resolution associated with
the increased uncertainty of the emission point. With the refractive index of
consecutive layers suitably increasing in the downstream direction, one may
achieve overlapping of the Cherenkov rings from a single charged particle. In
the opposite case of decreasing refractive index, one may obtain well separated
rings. In the former combination an approximately 40% increase in photon yield
is accompanied with just a minor degradation in single photon angular
resolution. The impact of this improvement on the pion/kaon separation at the
upgraded Belle detector is discussed.Comment: submitted to Nucl. Instr. Meth.
Milne-Eddington inversion of the Fe I line pair at 630~nm
The iron lines at 630.15 and 630.25 nm are often used to determine the
physical conditions of the solar photosphere. A common approach is to invert
them simultaneously under the Milne-Eddington approximation. The same
thermodynamic parameters are employed for the two lines, except for their
opacities, which are assumed to have a constant ratio. We aim at investigating
the validity of this assumption, since the two lines are not exactly the same.
We use magnetohydrodynamic simulations of the quiet Sun to examine the behavior
of the ME thermodynamic parameters and their influence on the retrieval of
vector magnetic fields and flow velocities. Our analysis shows that the two
lines can be coupled and inverted simultaneously using the same thermodynamic
parameters and a constant opacity ratio. The inversion of two lines is
significantly more accurate than single-line inversions because of the larger
number of observables.Comment: Accepted for publication in Astronomy and Astrophysics (Research
Note
Probing the properties of convective cores through g modes: high-order g modes in SPB and gamma Doradus stars
In main sequence stars the periods of high-order gravity modes are sensitive
probes of stellar cores and, in particular, of the chemical composition
gradient that develops near the outer edge of the convective core. We present
an analytical approximation of high-order g modes that takes into account the
effect of the mu gradient near the core. We show that in main-sequence models,
similarly to the case of white dwarfs, the periods of high-order gravity modes
are accurately described by a uniform period spacing superposed to an
oscillatory component. The periodicity and amplitude of such component are
related, respectively, to the location and sharpness of the mu gradient.
We investigate the properties of high-order gravity modes for stellar models
in a mass domain between 1 and 10 Msun, and the effects of the stellar mass,
evolutionary state, and extra-mixing processes on period spacing features. In
particular, we show that for models of a typical SPB star, a chemical mixing
that could likely be induced by the slow rotation observed in these stars, is
able to significantly change the g-mode spectra of the equilibrium model.
Prospects and challenges for the asteroseismology of gamma Doradus and SPB
stars are also discussed.Comment: 18 pages, 29 figures, accepted for publication in MNRA
ADIPLS -- the Aarhus adiabatic oscillation package
Development of the Aarhus adiabatic pulsation code started around 1978.
Although the main features have been stable for more than a decade, development
of the code is continuing, concerning numerical properties and output. The code
has been provided as a generally available package and has seen substantial use
at a number of installations. Further development of the package, including
bringing the documentation closer to being up to date, is planned as part of
the HELAS Coordination Action.Comment: Astrophys. Space Sci., in the pres
- …
