11 research outputs found

    Tryptophan needs of lactating sows fed diets supplemented with crystalline lysine.

    Full text link

    Low-resistance submicron CVD W interlevel via plugs on Al-Cu-Si

    No full text

    Successful modulation of temporoparietal junction activity and stimulus-driven attention by fNIRS-based neurofeedback—A randomized controlled proof-of-concept study

    No full text
    The right temporoparietal junction (rTPJ) is a core hub in neural networks associated with reorienting of attention and social cognition. However, it remains unknown whether participants can learn to actively modulate their rTPJ activity via neurofeedback. Here, we explored the feasibility of functional near-infrared spectroscopy (fNIRS)-based neurofeedback in modulating rTPJ activity and its effect on rTPJ functions such as reorienting of attention and visual perspective taking. In a bidirectional regulation control group design, 50 healthy participants were reinforced to either up- or downregulate rTPJ activation over 4 days of training. Both groups showed an increase in rTPJ activity right from the beginning of the training but only the upregulation group maintained this effect, while the downregulation group showed a decline from the initial rTPJ activation. This suggests a learning effect in the downregulation exclusively, making it challenging to draw definitive conclusions about the effectiveness of rTPJ upregulation training. However, we observed group-specific effects on the behavioral level. We found a significant group x time interaction effect in the performance of the reorienting of attention task and group-specific changes, with decreased reaction times (RTs) in the upregulation group and increased RTs in the downregulation group across all conditions after the neurofeedback training. Those with low baseline performance showed greater improvements. In the perspective-taking task, however, only time effects were observed that were non-group-specific. These findings demonstrate that fNIRS-based neurofeedback is a feasible method to modulate rTPJ functions with preliminary evidence of neurophysiologically specific effects, thus paving the way for future applications of non-invasive rTPJ modulation in neuropsychiatric disorders

    Compare Display Schemes for Lung Nodule CT Screening

    No full text
    This study investigated the relative efficiencies of a stereographic display and two monoscopic display schemes for detecting lung nodules in chest computed tomography (CT). The ultimate goal was to determine whether stereoscopic display provides advantages for visualization and interpretation of three-dimensional (3D) medical image datasets. A retrospective study that compared lung nodule detection performances achieved using three different schemes for displaying 3D CT data was conducted. The display modes included slice-by-slice, orthogonal maximum intensity projection (MIP), and stereoscopic display. One hundred lung-cancer screening CT examinations containing 647 nodules were interpreted by eight radiologists, in each of the display modes. Reading times and displayed slab thickness versus time were recorded, as well as the probability, location, and size for each detected nodule. Nodule detection performance was analyzed using the receiver operating characteristic method. The stereo display mode provided higher detection performance with a shorter interpretation time, as compared to the other display modes tested in the study, although the difference was not statistically significant. The analysis also showed that there was no difference in the patterns of displayed slab thickness versus time between the stereo and MIP display modes. Most radiologists preferred reading the 3D data at a slab thickness that corresponded to five CT slices. Our results indicate that stereo display has the potential to improve radiologists' performance for detecting lung nodules in CT datasets. The experience gained in conducting the study also strongly suggests that further benefits can be achieved through providing readers with additional functionality

    Transitions in Viscous Liquids and Glasses

    No full text
    corecore