275 research outputs found
Mimetic gravity: a review of recent developments and applications to cosmology and astrophysics
Mimetic gravity is a Weyl-symmetric extension of General Relativity, related
to the latter by a singular disformal transformation, wherein the appearance of
a dust-like perfect fluid can mimic cold dark matter at a cosmological level.
Within this framework, it is possible to provide an unified geometrical
explanation for dark matter, the late-time acceleration, and inflation, making
it a very attractive theory. In this review, we summarize the main aspects of
mimetic gravity, as well as extensions of the minimal formulation of the model.
We devote particular focus to the reconstruction technique, which allows the
realization of any desired expansionary history of the Universe by an accurate
choice of potential, or other functions defined within the theory (as in the
case of mimetic gravity). We briefly discuss cosmological perturbation
theory within mimetic gravity. As a case study within which we apply the
concepts previously discussed, we study a mimetic Ho\v{r}ava-like theory, of
which we explore solutions and cosmological perturbations in detail. Finally,
we conclude the review by discussing static spherically symmetric solutions
within mimetic gravity, and apply our findings to the problem of galactic
rotation curves. Our review provides an introduction to mimetic gravity, as
well as a concise but self-contained summary of recent findings, progresses,
open questions, and outlooks on future research directions.Comment: 68 pages, invited review to appear in Advances in High Energy Physic
MDA, oxypurines, and nucleosides relate to reperfusion in short-term incomplete cerebral ischemia in the rat
Short-term incomplete cerebral ischemia (5 min) was induced in the rat by the bilateral clamping of the common carotid arteries. Reperfusion was obtained by removing carotid clamping and was carried out for the following 10 min. Animals were sacrificed either at the end of ischemia or reperfusion. Controls were represented by a group of sham-operated rats. Peripheral venous blood samples were withdrawn from the femoral vein from rats subjected to cerebral reperfusion 5 min before ischemia, at the end of ischemia, and 10 min after reperfusion. Neutralized perchloric acid extracts of brain tissue were analyzed by a highly sensitive high-performance liquid chromatography (HPLC) method for the direct determination of malondialdehyde, oxypurines, nucleosides, nicotinic coenzymes, and high-energy phosphates. In addition, plasma concentrations of malondialdehyde, hypoxanthine, xanthine, inosine, uric acid, and adenosine were determined by the same HPLC technique. Incomplete cerebral ischemia induced the appearance of a significant amount (8.05 nmol/g w.w.; SD = 2.82) of cerebral malondialdehyde (which was undetectable in control animals) and a decrease of ascorbic acid. A further 6.6-fold increase of malondialdehyde (53.30 nmol/g w.w.; SD = 17.77) and a 18.5% decrease of ascorbic acid occurred after 10 min of reperfusion. Plasma malondialdehyde, which was present in minimal amount before ischemia (0.050 mumol/L; SD = 0.015), significantly increased after 5 min of ischemia (0.277 mumol/L; SD = 0.056) and was strikingly augmented after 10 min of reperfusion (0.682 mumol/L; SD = 0.094). A similar trend was observed for xanthine, uric acid, inosine, and adenosine, while hypoxanthine reached its maximal concentration after 5 min of incomplete ischemia, being significantly decreased after reperfusion. From the data obtained, it can be concluded that tissue concentrations of malondialdehyde and ascorbic acid, and plasma levels of malondialdehyde, oxypurines, and nucleosides, reflect both the oxygen radical-mediated tissue injury and the depression of energy metabolism, thus representing early biochemical markers of short-term incomplete brain ischemia and reperfusion in the rat. In particular, these results suggest the possibility of using the variation of malondialdehyde, oxypurines, and nucleosides in peripheral blood as a potential biochemical indicator of reperfusion damage occurring to postischemic tissues
Asteroids' physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution
The larger number of models of asteroid shapes and their rotational states
derived by the lightcurve inversion give us better insight into both the nature
of individual objects and the whole asteroid population. With a larger
statistical sample we can study the physical properties of asteroid
populations, such as main-belt asteroids or individual asteroid families, in
more detail. Shape models can also be used in combination with other types of
observational data (IR, adaptive optics images, stellar occultations), e.g., to
determine sizes and thermal properties. We use all available photometric data
of asteroids to derive their physical models by the lightcurve inversion method
and compare the observed pole latitude distributions of all asteroids with
known convex shape models with the simulated pole latitude distributions. We
used classical dense photometric lightcurves from several sources and
sparse-in-time photometry from the U.S. Naval Observatory in Flagstaff,
Catalina Sky Survey, and La Palma surveys (IAU codes 689, 703, 950) in the
lightcurve inversion method to determine asteroid convex models and their
rotational states. We also extended a simple dynamical model for the spin
evolution of asteroids used in our previous paper. We present 119 new asteroid
models derived from combined dense and sparse-in-time photometry. We discuss
the reliability of asteroid shape models derived only from Catalina Sky Survey
data (IAU code 703) and present 20 such models. By using different values for a
scaling parameter cYORP (corresponds to the magnitude of the YORP momentum) in
the dynamical model for the spin evolution and by comparing synthetics and
observed pole-latitude distributions, we were able to constrain the typical
values of the cYORP parameter as between 0.05 and 0.6.Comment: Accepted for publication in A&A, January 15, 201
Coordinated cadherin functions sculpt respiratory motor circuit connectivity
Breathing, and the motor circuits that control it, are essential for life. At the core of respiratory circuits are Dbx1-derived interneurons, which generate the rhythm and pattern of breathing, and phrenic motor neurons (MNs), which provide the final motor output that drives diaphragm muscle contractions during inspiration. Despite their critical function, the principles that dictate how respiratory circuits assemble are unknown. Here we show that coordinated activity of a type I cadherin (N-cadherin) and type II cadherins (Cadherin-6, -9, and -10) is required in both MNs and Dbx1-derived neurons to generate robust respiratory motor output. Both MN- and Dbx1-specific cadherin inactivation in mice during a critical developmental window results in perinatal lethality due to respiratory failure and a striking reduction in phrenic MN bursting activity. This combinatorial cadherin code is required to establish phrenic MN cell body and dendritic topography; surprisingly, however, cell body position appears to be dispensable for the targeting of phrenic MNs by descending respiratory inputs. Our findings demonstrate that type I and type II cadherins function cooperatively throughout the respiratory circuit to generate a robust breathing output and reveal novel strategies that drive the assembly of motor circuits
Assessing a measure for Quality of Life in patients with severe Alopecia Areata: a multicentric Italian study
objective the prevalence of anxiety and depression in patients diagnosed with alopecia areata (AA) is very high and this significant burden of psychological symptoms threatens the health-related quality of Life (HRQoL) of affected patients. Indeed, AA often does not produce significant physical symptoms, but it nonetheless disrupts many areas of mental health. clinical assessment of disease severity may not reliably predict patient's HRQoL, nor may it predict the patient's perception of illness. for this reason, considerable effort has been made to apply and develop measures that consider patient's perception and assess the HRQoL of individuals affected by AA. the aim of this multicentric study was to provide the Italian version of the Skindex-16AA and to evaluate its psychometric properties in a clinical sample of consecutive patients with moderate-to-severe AA. methods this is a longitudinal, multicenter, observational study. patients returned for follow-up visits at 4-, 12-, and 24-weeks. the analyses of the current work aimed to confirm the factorial structure of the skindex-16AA. in the case of non-fit, an alternative structure for the model was proposed, using an exploratory graph analysis and the bayesian approach. results the sample was composed of 106 patients with AA. alopecia universalis was the most frequently diagnosed type of alopecia at all time points. the analyses on the skindex-16AA revealed that a two-factor structure with eight items fit the data best (bayesian posterior predictive checking using 95% confidence Interval for the difference between the observed and the replicated chi-square values = -6.246/56.395, posterior predictive P-value = 0.06), and reported satisfactory psychometric properties (i.e., internal consistency and convergent validity).conclusion the skindex-8AA demonstrated optimal psychometric properties (i.e., convergent and construct validity, and test-retest reliability) measured in a sample of patients with AA, that may suggest that it is an appropriate tool to measure the HRQoL in AA patients. however, further studies are needed in order to confirm and tested other psychometric features of this tool
- …
