1,096 research outputs found
Genetic Inhibition of Phosphorylation of the Translation Initiation Factor eIF2alpha Does Not Block Abeta-Dependent Elevation of BACE1 and APP Levels or Reduce Amyloid Pathology in a Mouse Model of Alzheimer's Disease
beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) initiates the production of beta-amyloid (Abeta), the major constituent of amyloid plaques in Alzheimer's disease (AD). BACE1 is elevated approximately 2-3 fold in AD brain and is concentrated in dystrophic neurites near plaques, suggesting BACE1 elevation is Abeta-dependent. Previously, we showed that phosphorylation of the translation initiation factor eIF2alpha de-represses translation of BACE1 mRNA following stress such as energy deprivation. We hypothesized that stress induced by Abeta might increase BACE1 levels by the same translational mechanism involving eIF2alpha phosphorylation. To test this hypothesis, we used three different genetic strategies to determine the effects of reducing eIF2alpha phosphorylation on Abeta-dependent BACE1 elevation in vitro and in vivo: 1) a two-vector adeno-associated virus (AAV) system to express constitutively active GADD34, the regulatory subunit of PP1c eIF2alpha phosphatase; 2) a non-phosphorylatable eIF2alpha S51A knockin mutation; 3) a BACE1-YFP transgene lacking the BACE1 mRNA 5' untranslated region (UTR) required for eIF2alpha translational regulation. The first two strategies were used in primary neurons and 5XFAD transgenic mice, while the third strategy was employed only in 5XFAD mice. Despite very effective reduction of eIF2alpha phosphorylation in both primary neurons and 5XFAD brains, or elimination of eIF2alpha-mediated regulation of BACE1-YFP mRNA translation in 5XFAD brains, Abeta-dependent BACE1 elevation was not decreased. Additionally, robust inhibition of eIF2alpha phosphorylation did not block Abeta-dependent APP elevation in primary neurons, nor did it reduce amyloid pathology in 5XFAD mice. We conclude that amyloid-associated BACE1 elevation is not caused by translational de-repression via eIF2alpha phosphorylation, but instead appears to involve a post-translational mechanism. These definitive genetic results exclude a role for eIF2alpha phosphorylation in Abeta-dependent BACE1 and APP elevation. We suggest a vicious pathogenic cycle wherein Abeta42 toxicity induces peri-plaque BACE1 and APP accumulation in dystrophic neurites leading to exacerbated Abeta production and plaque progression
Reduction in BACE1 decreases body weight, protects against diet-induced obesity and enhances insulin sensitivity in mice
Insulin resistance and impaired glucose homoeostasis are important indicators of Type 2 diabetes and are early risk factors of AD (Alzheimer's disease). An essential feature of AD pathology is the presence of BACE1 (β-site amyloid precursor protein-cleaving enzyme 1), which regulates production of toxic amyloid peptides. However, whether BACE1 also plays a role in glucose homoeostasis is presently unknown. We have used transgenic mice to analyse the effects of loss of BACE1 on body weight, and lipid and glucose homoeostasis. BACE1−/− mice are lean, with decreased adiposity, higher energy expenditure, and improved glucose disposal and peripheral insulin sensitivity than wild-type littermates. BACE1−/− mice are also protected from diet-induced obesity. BACE1-deficient skeletal muscle and liver exhibit improved insulin sensitivity. In a skeletal muscle cell line, BACE1 inhibition increased glucose uptake and enhanced insulin sensitivity. The loss of BACE1 is associated with increased levels of UCP1 (uncoupling protein 1) in BAT (brown adipose tissue) and UCP2 and UCP3 mRNA in skeletal muscle, indicative of increased uncoupled respiration and metabolic inefficiency. Thus BACE1 levels may play a critical role in glucose and lipid homoeostasis in conditions of chronic nutrient excess. Therefore strategies that ameliorate BACE1 activity may be important novel approaches for the treatment of diabetes
APP mouse models for Alzheimer's disease preclinical studies
Animal models of human diseases that accurately recapitulate clinical pathology are indispensable for understanding molecular mechanisms and advancing preclinical studies. The Alzheimer's disease (AD) research community has historically used first-generation transgenic (Tg) mouse models that overexpress proteins linked to familial AD (FAD), mutant amyloid precursor protein (APP), or APP and presenilin (PS). These mice exhibit AD pathology, but the overexpression paradigm may cause additional phenotypes unrelated to AD Second-generation mouse models contain humanized sequences and clinical mutations in the endogenous mouse App gene. These mice show Aβ accumulation without phenotypes related to overexpression but are not yet a clinical recapitulation of human AD In this review, we evaluate different APP mouse models of AD, and review recent studies using the second-generation mice. We advise AD researchers to consider the comparative strengths and limitations of each model against the scientific and therapeutic goal of a prospective preclinical study
On the Possibility of Measuring the Gravitomagnetic Clock Effect in an Earth Space-Based Experiment
In this paper the effect of the post-Newtonian gravitomagnetic force on the
mean longitudes of a pair of counter-rotating Earth artificial satellites
following almost identical circular equatorial orbits is investigated. The
possibility of measuring it is examined. The observable is the difference of
the times required to in passing from 0 to 2 for both senses of
motion. Such gravitomagnetic time shift, which is independent of the orbital
parameters of the satellites, amounts to 5 s for Earth; it is
cumulative and should be measured after a sufficiently high number of
revolutions. The major limiting factors are the unavoidable imperfect
cancellation of the Keplerian periods, which yields a constraint of 10
cm in knowing the difference between the semimajor axes of the satellites,
and the difference of the inclinations of the orbital planes which, for
, should be less than . A pair of spacecrafts
endowed with a sophisticated intersatellite tracking apparatus and drag-free
control down to 10 cm s Hz level might allow to meet
the stringent requirements posed by such a mission.Comment: LaTex2e, 22 pages, no tables, 1 figure, 38 references. Final version
accepted for publication in Classical and Quantum Gravit
The Basic Biology of BACE1: A Key Therapeutic Target for Alzheimer’s Disease
Alzheimer’s disease (AD) is an intractable, neurodegenerative disease that appears to be brought about by both genetic and non-genetic factors. The neuropathology associated with AD is complex, although amyloid plaques composed of the β-amyloid peptide (Aβ) are hallmark neuropathological lesions of AD brain. Indeed, Aβ plays an early and central role in this disease. β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is the initiating enzyme in Aβ genesis and BACE1 levels are elevated under a variety of conditions. Given the strong correlation between Aβ and AD, and the elevation of BACE1 in this disease, this enzyme is a prime drug target for inhibiting Aβ production in AD. However, nine years on from the initial identification of BACE1, and despite intense research, a number of key questions regarding BACE1 remain unanswered. Indeed, drug discovery and development for AD continues to be challenging. While current AD therapies temporarily slow cognitive decline, treatments that address the underlying pathologic mechanisms of AD are completely lacking. Here we review the basic biology of BACE1. We pay special attention to recent research that has provided some answers to questions such as those involving the identification of novel BACE1 substrates, the potential causes of BACE1 elevation and the putative function of BACE1 in health and disease. Our increasing understanding of BACE1 biology should aid the development of compounds that interfere with BACE1 expression and activity and may lead to the generation of novel therapeutics for AD
Computational exploration of molecular receptive fields in the olfactory bulb reveals a glomerulus-centric chemical map
© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Progress in olfactory research is currently hampered by incomplete knowledge about chemical receptive ranges of primary receptors. Moreover, the chemical logic underlying the arrangement of computational units in the olfactory bulb has still not been resolved. We undertook a large-scale approach at characterising molecular receptive ranges (MRRs) of glomeruli in the dorsal olfactory bulb (dOB) innervated by the MOR18-2 olfactory receptor, also known as Olfr78, with human ortholog OR51E2. Guided by an iterative approach that combined biological screening and machine learning, we selected 214 odorants to characterise the response of MOR18-2 and its neighbouring glomeruli. We found that a combination of conventional physico-chemical and vibrational molecular descriptors performed best in predicting glomerular responses using nonlinear Support-Vector Regression. We also discovered several previously unknown odorants activating MOR18-2 glomeruli, and obtained detailed MRRs of MOR18-2 glomeruli and their neighbours. Our results confirm earlier findings that demonstrated tunotopy, that is, glomeruli with similar tuning curves tend to be located in spatial proximity in the dOB. In addition, our results indicate chemotopy, that is, a preference for glomeruli with similar physico-chemical MRR descriptions being located in spatial proximity. Together, these findings suggest the existence of a partial chemical map underlying glomerular arrangement in the dOB. Our methodology that combines machine learning and physiological measurements lights the way towards future high-throughput studies to deorphanise and characterise structure-activity relationships in olfaction.Peer reviewe
Aβ reduction in BACE1 heterozygous null 5XFAD mice is associated with transgenic APP level
Discovery of biphenylacetamide-derived inhibitors of BACE1 using de novo structure-based molecular design
β-Secretase (BACE1), the enzyme responsible for the first and rate-limiting step in the production of amyloid-β peptides, is an attractive target for the treatment of Alzheimer’s disease. In this study, we report the application of the de novo fragment-based molecular design program SPROUT to the discovery of a series of nonpeptide BACE1 inhibitors based upon a biphenylacetamide scaffold. The binding affinity of molecules based upon this designed molecular scaffold was increased from an initial BACE1 IC50 of 323 μM to 27 μM following the synthesis of a library of optimized ligands whose structures were refined using the recently developed SPROUT-HitOpt software. Although a number of inhibitors were found to exhibit cellular toxicity, one compound in the series was found to have useful BACE1 inhibitory activity in a cellular assay with minimal cellular toxicity. This work demonstrates the power of an in silico fragment-based molecular design approach in the discovery of novel BACE1 inhibitors
Functional Amyloid and Other Protein Fibers in the Biofilm Matrix
Biofilms are ubiquitous in the natural and man-made environment. They are defined as microbes that are encapsulated in an extracellular, self-produced, biofilm matrix. Growing evidence from the genetic and biochemical analysis of single species biofilms has linked the presence of fibrous proteins to a functional biofilm matrix. Some of these fibers have been described as functional amyloid or amyloid-like fibers. Here we provide an overview of the biophysical and biological data for a wide range of protein fibers found in the biofilm matrix of Gram-positive and Gram-negative bacteria.</p
Recommended from our members
2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), affect millions of people every year and so far, there are no therapeutic cures available. Even though animal and histological models have been of great aid in understanding disease mechanisms and identifying possible therapeutic strategies, in order to find disease-modifying solutions there is still a critical need for systems that can provide more predictive and physiologically relevant results. One possible avenue is the development of patient-derived models, e.g. by reprogramming patient somatic cells into human induced pluripotent stem cells (hiPSCs), which can then be differentiated into any cell type for modelling. These systems contain key genetic information from the donors, and therefore have enormous potential as tools in the investigation of pathological mechanisms underlying disease phenotype, and progression, as well as in drug testing platforms. hiPSCs have been widely cultured in 2D systems, but in order to mimic human brain complexity, 3D models have been proposed as a more advanced alternative. This review will focus on the use of patient-derived hiPSCs to model AD, PD, HD and ALS. In brief, we will cover the available stem cells, types of 2D and 3D culture systems, existing models for neurodegenerative diseases, obstacles to model these diseases in vitro, and current perspectives in the field
- …
