2,761 research outputs found
Back to the Future: The Managed Care Revolution
The evolution to a managed care system did not achieve the complete, fundamental change in the health care delivery system that was envisioned by some of its early proponents. As the managed care movement evolved beyond the prepaid group practice model, it focused primarily on methods used to spread the cost of health care services
Dynamics of immersed molecules in superfluids
The dynamics of a molecule immersed in a superfluid medium are considered.
Results are derived using a classical hydrodynamic approach followed by
canonical quantization. The classical model, a rigid body immersed in
incompressible fluid, permits a thorough analysis; its effective Hamiltonian
generalizes the usual rigid-rotor Hamiltonian. In contrast to the free rigid
rotor, the immersed body is shown to have chaotic dynamics. Quantization of the
classical model leads to new and experimentally verifiable features. It is
shown, for instance, that chiral molecules can behave as "quantum propellers":
the rotational-translational coupling induced by the superfluid leads to a
nonzero linear momentum in the ground state. Hydrogen peroxide is a strong
candidate for experimental detection of this effect. The signature is a
characteristic splitting of rotational absorption lines. The 1_{01} --> 1_{10}
line in hydrogen peroxide, for example, is predicted to split into three lines
separated by as much as 0.01 cm^{-1}, which is about the experimental
linewidth.Comment: 10 pages, 3 figure
Dense packing crystal structures of physical tetrahedra
We present a method for discovering dense packings of general convex hard
particles and apply it to study the dense packing behavior of a one-parameter
family of particles with tetrahedral symmetry representing a deformation of the
ideal mathematical tetrahedron into a less ideal, physical, tetrahedron and all
the way to the sphere. Thus, we also connect the two well studied problems of
sphere packing and tetrahedron packing on a single axis. Our numerical results
uncover a rich optimal-packing behavior, compared to that of other continuous
families of particles previously studied. We present four structures as
candidates for the optimal packing at different values of the parameter,
providing an atlas of crystal structures which might be observed in systems of
nano-particles with tetrahedral symmetry
Random projections and the optimization of an algorithm for phase retrieval
Iterative phase retrieval algorithms typically employ projections onto
constraint subspaces to recover the unknown phases in the Fourier transform of
an image, or, in the case of x-ray crystallography, the electron density of a
molecule. For a general class of algorithms, where the basic iteration is
specified by the difference map, solutions are associated with fixed points of
the map, the attractive character of which determines the effectiveness of the
algorithm. The behavior of the difference map near fixed points is controlled
by the relative orientation of the tangent spaces of the two constraint
subspaces employed by the map. Since the dimensionalities involved are always
large in practical applications, it is appropriate to use random matrix theory
ideas to analyze the average-case convergence at fixed points. Optimal values
of the gamma parameters of the difference map are found which differ somewhat
from the values previously obtained on the assumption of orthogonal tangent
spaces.Comment: 15 page
Rydberg molecules for ion-atom scattering in the ultracold regime
We propose a novel experimental method to extend the investigation of
ion-atom collisions from the so far studied cold, essentially classical regime
to the ultracold, quantum regime. Key aspect of this method is the use of
Rydberg molecules to initialize the ultracold ion-atom scattering event. We
exemplify the proposed method with the lithium ion-atom system, for which we
present simulations of how the initial Rydberg molecule wavefunction, freed by
photoionization, evolves in the presence of the ion-atom scattering potential.
We predict bounds for the ion-atom scattering length from ab initio
calculations of the interaction potential. We demonstrate that, in the
predicted bounds, the scattering length can be experimentally determined from
the velocity of the scattered wavepacket in the case of
- , and from the
molecular ion fraction in the case of -
. The proposed method to utilize Rydberg molecules for
ultracold ion-atom scattering, here particularized for the lithium ion-atom
system, is readily applicable to other ion-atom systems as well.Comment: 12 pages, 7 figure
Early last glacial maximum in the southern Central Andes reveals northward shift of the westerlies at ~39 ka
The latitudinal position of the southern westerlies has been suggested to be a key parameter for the climate on Earth. According to the general notion, the southern westerlies were shifted equatorward during the global Last Glacial Maximum (LGM: ~24–18 ka), resulting in reduced deep ocean ventilation, accumulation of old dissolved carbon, and low atmospheric CO<sub>2</sub> concentrations. In order to test this notion, we applied surface exposure dating on moraines in the southern Central Andes, where glacial mass balances are particularly sensitive to changes in precipitation, i.e. to the latitudinal position of the westerlies. Our results provide robust evidence that the maximum glaciation occurred already at ~39 ka, significantly predating the global LGM. This questions the role of the westerlies for atmospheric CO<sub>2</sub>, and it highlights our limited understanding of the forcings of atmospheric circulation
Wind field and sex constrain the flight speeds of central-place foraging albatrosses
By extracting energy from the highly dynamic wind and wave fields that typify pelagic habitats, albatrosses are able to proceed almost exclusively by gliding flight. Although energetic costs of gliding are low, enabling breeding albatrosses to forage hundreds to thousands of kilometers from their colonies, these and time costs vary with relative wind direction. This causes albatrosses in some areas to route provisioning trips to avoid headwind flight, potentially limiting habitat accessibility during the breeding season. In addition, because female albatrosses have lower wing loadings than males, it has been argued that they are better adapted to flight in light winds, leading to sexual segregation of foraging areas. We used satellite telemetry and immersion logger data to quantify the effects of relative wind speed, sex, breeding stage, and trip stage on the ground speeds (Vg) of four species of Southern Ocean albatrosses breeding at South Georgia. Vg was linearly related to the wind speed component in the direction of flight (Vwf), its effect being greatest on Wandering Albatrosses Diomedea exulans, followed by Black-browed Albatrosses Thalassarche melanophrys, Light-mantled Sooty Albatrosses Phoebatria palpebrata, and Gray-headed Albatrosses T. chrysostoma. Ground speeds at Vwf = 0 were similar to airspeeds predicted by aerodynamic theory and were higher in males than in females. However, we found no evidence that this led to sexual segregation, as males and females experienced comparable wind speeds during foraging trips. Black-browed, Gray-headed, and Light-mantled Sooty Albatrosses did not engage in direct, uninterrupted bouts of flight on moonless nights, but Wandering Albatrosses attained comparable Vg night and day, regardless of lunar phase. Relative flight direction was more important in determining Vg than absolute wind speed. When birds were less constrained in the middle stage of foraging trips, all species flew predominantly across the wind. However, in some instances, commuting birds encountered headwinds during outward trips and tail winds on their return, with the result that Vg was 1.0–3.4 m/s faster during return trips. This, we hypothesize, could result from constraints imposed by the location of prey resources relative to the colony at South Georgia or could represent an energy optimization strategy
Chewed Out: An Experimental Link between Food Material Properties and Repetitive Loading of the Masticatory Apparatus in Mammals
Using a model organism (rabbits) that resembles a number of mammalian herbivores in key aspects of its chewing behaviors, we examined how variation in dietary mechanical properties a ects food breakdown during mastication. Such data have implications for understanding phenotypic variation in the mammalian feeding apparatus, particularly with respect to linking jaw form to diet-induced repetitive loading. Results indicate that chewing frequency (chews/s) is independent of food properties, whereas chewing investment (chews/g) and chewing duration(s), which are proportional to repetitive loading of the jaws, are positively related to food sti ness and toughness. In comparisons of displacement-limited and stress-limited fragmentation indices, which respectively characterize the intraoral breakdown of tough and sti foods, increases in chewing investment and duration are linked solely to sti ness. This suggests that sti er foods engender higher peak loads and increased cyclical loading. Our ndings challenge conventional wisdom by demonstrating that toughness does not, by itself, underlie increases in cyclical loading and loading duration. Instead, tough foods may be associated with such jaw-loading patterns because they must be processed in greater volumes owing to their lower nutritive quality and for longer periods of time to increase oral exposure to salivary chemicals
Consequences of the H-Theorem from Nonlinear Fokker-Planck Equations
A general type of nonlinear Fokker-Planck equation is derived directly from a
master equation, by introducing generalized transition rates. The H-theorem is
demonstrated for systems that follow those classes of nonlinear Fokker-Planck
equations, in the presence of an external potential. For that, a relation
involving terms of Fokker-Planck equations and general entropic forms is
proposed. It is shown that, at equilibrium, this relation is equivalent to the
maximum-entropy principle. Families of Fokker-Planck equations may be related
to a single type of entropy, and so, the correspondence between well-known
entropic forms and their associated Fokker-Planck equations is explored. It is
shown that the Boltzmann-Gibbs entropy, apart from its connection with the
standard -- linear Fokker-Planck equation -- may be also related to a family of
nonlinear Fokker-Planck equations.Comment: 19 pages, no figure
- …
