4,726 research outputs found
Radiative non-isothermal Bondi accretion onto a massive black hole
In this paper, we present the classical Bondi accretion theory for the case
of non-isothermal accretion processes onto a supermassive black hole (SMBH),
including the effects of X-ray heating and the radiation force due to electron
scattering and spectral lines. The radiation field is calculated by considering
an optically thick, geometrically thin, standard accretion disk as the emitter
of UV photons and a spherical central object as a source of X-ray emission. In
the present analysis, the UV emission from the accretion disk is assumed to
have an angular dependence, while the X-ray/central object radiation is assumed
to be isotropic. This allows us to build streamlines in any angular direction
we need to. The influence of both types of radiation is evaluated for different
flux fractions of the X-ray and UV emissions with and without the effects of
spectral line driving. We find that the radiation emitted near the SMBH
interacts with the infalling matter and modifies the accretion dynamics. In the
presence of line driving, a transition resembles from pure type 1 & 2 to type 5
solutions (see Fig2.1 of Frank etal. 2002), which takes place regardless of
whether or not the UV emission dominates over the X-ray emission. We compute
the radiative factors at which this transition occurs, and discard type 5
solution from all our models. Estimated values of the accretion radius and
accretion rate in terms of the classical Bondi values are also given. The
results are useful for the construction of proper initial conditions for
time-dependent hydrodynamical simulations of accretion flows onto SMBH at the
centre of galaxies.Comment: 10 pages, 10 figures, Accepted to be published in A&
Using Social Network Analysis to Improve Communities of Practice
PublishedThis is the final version of the article. Available from University of California Press via the DOI in this record.n/
Besnoitia besnoiti infection alters both endogenous cholesterol de novo synthesis and exogenous LDL uptake in host endothelial cells
Besnoitia besnoiti, an apicomplexan parasite of cattle being considered as emergent in Europe, replicates fast in host endothelial cells during acute infection and is in considerable need for energy, lipids and other building blocks for offspring formation. Apicomplexa are generally considered as defective in cholesterol synthesis and have to scavenge cholesterol from their host cells for successful replication. Therefore, we here analysed the influence of B. besnoiti on host cellular endogenous cholesterol synthesis and on sterol uptake from exogenous sources. GC-MS-based profiling of cholesterol-related sterols revealed enhanced cholesterol synthesis rates in B. besnoiti-infected cells. Accordingly, lovastatin and zaragozic acid treatments diminished tachyzoite production. Moreover, increased lipid droplet contents and enhanced cholesterol esterification was detected and inhibition of the latter significantly blocked parasite proliferation. Furthermore, artificial increase of host cellular lipid droplet disposability boosted parasite proliferation. Interestingly, lectin-like oxidized low density lipoprotein receptor 1 expression was upregulated in infected endothelial hostcells, whilst low density lipoproteins (LDL) receptor was not affected by parasite infection. However, exogenous supplementations with non-modified and acetylated LDL both boosted B. besnoiti proliferation. Overall, current data show that B. besnoiti simultaneously exploits both, endogenous cholesterol biosynthesis and cholesterol uptake from exogenous sources, during asexual replication
Besnoitia besnoiti infection alters both endogenous cholesterol de novo synthesis and exogenous LDL uptake in host endothelial cells
Besnoitia besnoiti, an apicomplexan parasite of cattle being considered as emergent in Europe, replicates fast in host endothelial cells during acute infection and is in considerable need for energy, lipids and other building blocks for offspring formation. Apicomplexa are generally considered as defective in cholesterol synthesis and have to scavenge cholesterol from their host cells for successful replication. Therefore, we here analysed the influence of B. besnoiti on host cellular endogenous cholesterol synthesis and on sterol uptake from exogenous sources. GC-MS-based profiling of cholesterol-related sterols revealed enhanced cholesterol synthesis rates in B. besnoiti-infected cells. Accordingly, lovastatin and zaragozic acid treatments diminished tachyzoite production. Moreover, increased lipid droplet contents and enhanced cholesterol esterification was detected and inhibition of the latter significantly blocked parasite proliferation. Furthermore, artificial increase of host cellular lipid droplet disposability boosted parasite proliferation. Interestingly, lectin-like oxidized low density lipoprotein receptor 1 expression was upregulated in infected endothelial hostcells, whilst low density lipoproteins (LDL) receptor was not affected by parasite infection. However, exogenous supplementations with non-modified and acetylated LDL both boosted B. besnoiti proliferation. Overall, current data show that B. besnoiti simultaneously exploits both, endogenous cholesterol biosynthesis and cholesterol uptake from exogenous sources, during asexual replication
Seven years of marine environmental changes monitoring at coastal OOCS stations (Catalan Sea, NW Mediterranean)
Since March 2009 up to the present (more than 7 years now), the
Operational Observatory of the Catalan Sea (OOCS; http://www2.ceab.csic.es/
oceans/) remains a witness of persistent marine environmental changes. The OOCS
has two fixed observation stations at the head of the Blanes Canyon (200 m depth,
41.66°N; 2.91°E) and at the Blanes bay (20 m depth, 41.67°N; 2.80°E) in the Catalan
Sea, NW Mediterranean. At the canyon station, a multi-parametric buoy presently
installed delivers high frequency (by 30 min) and multi-parametric oceanographic
(i.e. salinity, temperature, chlorophyll, turbidity, as well as light intensity in the
PAR range for the upper 50 m depth) and atmospheric (air temperature, relative
humidity, wind speed and direction and PAR) data. Subsurface photos and videos
by an IP high resolution fisheye camera attached to the buoy are also delivered
at 4-hour basis. Data and multimedia are transmitted in near real time for public
access, via combined GSM/GPRS and 3G connections. At both stations, CTD profiles
and water samples (collected for nutrients and picoplankton analyses) are carried
out on board a research vessel at fortnightly basis. Numerical simulations along
with the time series of in-situ observations show inter-annual seasonality anomalies
possibly linked to global environmental changes. The lower-atmosphere and
upper-sea environmental time series data collected prove the occurrence of shifting
patterns of heat and matter fluxes impacting pelagic and benthic organisms.Peer Reviewe
Intracellular trafficking and cellular uptake mechanism of PHBV nanoparticles for targeted delivery in epithelial cell lines
Indexación: Web of Science; Scopus; Scielo.Background: Nanotechnology is a science that involves imaging, measurement, modeling and a manipulation of matter at the nanometric scale. One application of this technology is drug delivery systems based on nanoparticles obtained from natural or synthetic sources. An example of these systems is synthetized from poly(3-hydroxybutyrate-co-3-hydroxyvalerate), which is a biodegradable, biocompatible and a low production cost polymer. The aim of this work was to investigate the uptake mechanism of PHBV nanoparticles in two different epithelial cell lines (HeLa and SKOV-3).
Results: As a first step, we characterized size, shape and surface charge of nanoparticles using dynamic light scattering and transmission electron microscopy. Intracellular incorporation was evaluated through flow cytometry and fluorescence microscopy using intracellular markers. We concluded that cellular uptake mechanism is carried out in a time, concentration and energy dependent way. Our results showed that nanoparticle uptake displays a cell-specific pattern, since we have observed different colocalization in two different cell lines. In HeLa (Cervical cancer cells) this process may occur via classical endocytosis pathway and some internalization via caveolin-dependent was also observed, whereas in SKOV-3 (Ovarian cancer cells) these patterns were not observed. Rearrangement of actin filaments showed differential nanoparticle internalization patterns for HeLa and SKOV-3. Additionally, final fate of nanoparticles was also determined, showing that in both cell lines, nanoparticles ended up in lysosomes but at different times, where they are finally degraded, thereby releasing their contents.
Conclusions: Our results, provide novel insight about PHBV nanoparticles internalization suggesting that for develop a proper drug delivery system is critical understand the uptake mechanism.https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-016-0241-
El conocimiento didáctico-matemático: una propuesta de evaluación de tres de sus facetas
En esta comunicación se presentan algunos criterios tenidos en cuenta para el diseño de un cuestionario para evaluar tres facetas del conocimiento matemático para la enseñanza de la derivada: el conocimiento común del contenido, el conocimiento especializado y el conocimiento ampliado. Así mismo se presenta una tarea propuesta en el cuestionario aplicado a estudiantes de las licenciaturas en Básica Matemáticas y Matemáticas -Física de la Universidad de Antioquia, Colombia
Anatomical and molecular properties of long descending propriospinal neurons in mice
Long descending propriospinal neurons (LDPNs) are interneurons that form direct connections between cervical and lumbar spinal circuits. LDPNs are involved in interlimb coordination and are important mediators of functional recovery after spinal cord injury (SCI). Much of what we know about LDPNs comes from a range of species, however, the increased use of transgenic mouse lines to better define neuronal populations calls for a more complete characterisation of LDPNs in mice. In this study, we examined the cell body location, inhibitory neurotransmitter phenotype, developmental provenance, morphology and synaptic inputs of mouse LDPNs throughout the cervical and upper thoracic spinal cord. LDPNs were retrogradely labelled from the lumbar spinal cord to map cell body locations throughout the cervical and upper thoracic segments. Ipsilateral LDPNs were distributed throughout the dorsal, intermediate and ventral grey matter as well as the lateral spinal nucleus and lateral cervical nucleus. In contrast, contralateral LDPNs were more densely concentrated in the ventromedial grey matter. Retrograde labelling in GlyT2GFP and GAD67GFP mice showed the majority of inhibitory LDPNs project either ipsilaterally or adjacent to the midline. Additionally, we used several transgenic mouse lines to define the developmental provenance of LDPNs and found that V2b positive neurons form a subset of ipsilaterally projecting LDPNs. Finally, a population of Neurobiotin (NB) labelled LDPNs were assessed in detail to examine morphology and plot the spatial distribution of contacts from a variety of neurochemically distinct axon terminals. These results provide important baseline data in mice for future work on their role in locomotion and recovery from SCI
- …
