335 research outputs found
Aging Is Accompanied by a Blunted Muscle Protein Synthetic Response to Protein Ingestion.
Published onlineJournal ArticleThis is the final version of the article. Available from Public Library of Science via the DOI in this record.PURPOSE: Progressive loss of skeletal muscle mass with aging (sarcopenia) forms a global health concern. It has been suggested that an impaired capacity to increase muscle protein synthesis rates in response to protein intake is a key contributor to sarcopenia. We assessed whether differences in post-absorptive and/or post-prandial muscle protein synthesis rates exist between large cohorts of healthy young and older men. PROCEDURES: We performed a cross-sectional, retrospective study comparing in vivo post-absorptive muscle protein synthesis rates determined with stable isotope methodologies between 34 healthy young (22±1 y) and 72 older (75±1 y) men, and post-prandial muscle protein synthesis rates between 35 healthy young (22±1 y) and 40 older (74±1 y) men. FINDINGS: Post-absorptive muscle protein synthesis rates did not differ significantly between the young and older group. Post-prandial muscle protein synthesis rates were 16% lower in the older subjects when compared with the young. Muscle protein synthesis rates were >3 fold more responsive to dietary protein ingestion in the young. Irrespective of age, there was a strong negative correlation between post-absorptive muscle protein synthesis rates and the increase in muscle protein synthesis rate following protein ingestion. CONCLUSIONS: Aging is associated with the development of muscle anabolic inflexibility which represents a key physiological mechanism underpinning sarcopenia
Metastatic disease in polyploid uveal melanoma patients is associated with BAP1 mutations
PURPOSE. Most of the uvea melanoma (UM) display a near-diploid (normal, ~2N) karyotype with only a few chromosomal changes. In contrast to these simple aberrations 18% of the UM samples show a polyploid character (>2N) and this was associated with an unfavorable prognosis. This study attempts to gain insight in the prognostic value of polyploidy in UM. METHODS. In 202 patients the ploidy status of the UM was determined using cytogenetic analysis, fluorescence-in-situ-hybridization (FISH), multiplex ligation dependent probe amplification (MLPA), and/or single nucleotide polymorphism (SNP) array analysis. Immunohistochemistry was used to determine the BAP1 expression and mutation analyses of BAP1 (coding regions) and the mutation hotspots for the SF3B1, EIF1AX, GNAQ, and GNA11 genes was carried out using Sanger sequencing or whole-exome sequencing. RESULTS. Twenty-three patients had a polyploid UM karyotype (11.4%). Patients with a polyploid tumor had larger tumors (15.61 vs. 13.13 mm, P = 0.004), and more often loss of heterozygosity of chromosome 3 (P ¼ 0.003). No difference in occurrence of mutations between polyploid and diploid tumors was observed for BAP1, SF3B1, EIF1AX, GNAQ, and GNA11. Polyploidy did not affect survival (P = 0.143). BAP1 deficiency was the only significant independent prognostic predictor for patients with polyploid tumors, with a 16- fold increased hazard ratio (HR 15.90, P = 0.009). CONCLUSIONS. The prevalence of mutations in the UM related genes is not different in polyploid UM compared with diploid UM. Moreover, similar to patients with diploid UM, BAP1 mutation is the most significant prognostic predictor of metastasis in patients with polyploid UM
Exome sequencing and functional analyses suggest that SIX6 is a gene involved in an altered proliferation-differentiation balance early in life and optic nerve degeneration at old age
Primary open-angle glaucoma (POAG) is a hereditary neurodegenerative disease, characterized by optic nerve changes including increased excavation, notching and optic disc hemorrhages. The excavation can be described by the vertical cup-disc ratio (VCDR). Previously, genome-wide significant evidence for the association of rs10483727 in SIX1-SIX6 locus with VCDR and subsequent POAG was found. Using 1000 genomes-based imputation of four independent population-based cohorts in the Netherlands, we identified a missense variant rs33912345 (His141Asn) in SIX6 associated with VCDR (Pmeta = 7.74 × 10-7, n = 11 473) and POAG (Pmeta = 6.09 × 10-3, n = 292). Exome sequencing analysis revealed another missense variant rs146737847 (Glu129Lys) also in SIX6 associated with VCDR (P = 5.09 × 10-3, n = 1208). These two findings point to SIX6 as the responsible gene for the previously reported association signal. Functional characterization of SIX6 in zebrafish revealed that knockdown of six6b led to a small eye phenotype. Histological analysis showed retinal lamination, implying an apparent normal development of the eye, but an underdeveloped lens, and reduced optic nerve diameter. Expression analysis of morphants at 3 dpf showed a 5.5-fold up-regulation of cdkn2b, a cyclin-dependent kinase inhibitor, involved in cell cycle regulation and previously associated with VCDR and POAG in genome-wide association studies (GWASs). Since both six6b and cdkn2b play a key role in cell proliferation, we assessed the proliferative activity in the eye of morphants and found an alteration in the proliferative pattern of retinal cells. Our findings in humans and zebrafish suggest a functional involvement of six6b in early eye development, and open new insights into the genetic architecture of POAG
Skeletal muscle disuse atrophy is not attenuated by dietary protein supplementation in healthy older men
This is the author accepted manuscript. The final version is available from OUP via the DOI in this recordShort successive periods of muscle disuse, due to injury or illness, can contribute significantly to the loss of muscle mass with aging (sarcopenia). It has been suggested that increasing the protein content of the diet may be an effective dietary strategy to attenuate muscle disuse atrophy. We hypothesized that protein supplementation twice daily would preserve muscle mass during a short period of limb immobilization. Twenty-three healthy older (69 ± 1 y) men were subjected to 5 d of one-legged knee immobilization by means of a full-leg cast with (PRO group; n = 11) or without (CON group; n = 12) administration of a dietary protein supplement (20.7 g of protein, 9.3 g of carbohydrate, and 3.0 g of fat) twice daily. Two d prior to and immediately after the immobilization period, single-slice computed tomography scans of the quadriceps and single-leg 1 repetition maximum strength tests were performed to assess muscle cross-sectional area (CSA) and leg muscle strength, respectively. Additionally, muscle biopsies were collected to assess muscle fiber characteristics as well as mRNA and protein expression of selected genes. Immobilization decreased quadriceps' CSAs by 1.5 ± 0.7% (P < 0.05) and 2.0 ± 0.6% (P < 0.05), and muscle strength by 8.3 ± 3.3% (P < 0.05) and 9.3 ± 1.6% (P < 0.05) in the CON and PRO groups, respectively, without differences between groups. Skeletal muscle myostatin, myogenin, and muscle RING-finger protein-1 (MuRF1) mRNA expression increased following immobilization in both groups (P < 0.05), whereas muscle atrophy F-box/atrogen-1 (MAFBx) mRNA expression increased in the PRO group only (P < 0.05). In conclusion, dietary protein supplementation (∼20 g twice daily) does not attenuate muscle loss during short-term muscle disuse in healthy older men. This trial was registered at clinicaltrials.gov as NCT01588808
Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly
Satellite cells (SC) are essential for skeletal muscle growth and repair. As sarcopenia is associated with type II muscle fiber atrophy, we hypothesized that SC content is specifically reduced in the type II fibers in the elderly. A total of 8 elderly (E:76+/-1y) and 8 young (Y:20+/-1y) healthy males were selected. Muscle biopsies were collected from the vastus lateralis in both legs. ATPase staining and a pax7-antibody were used to determine fiber type specific SC content (i.e. pax7-positive SC) on serial muscle cross-sections. In contrast to the type I fibers, the proportion and mean cross-sectional area of the type II fibers were substantially reduced in the E versus the Y. The number of SC per type I fiber was similar in E and Y. However, the number of SC per type II fiber was substantially lower in the E versus the Y (0.044+/-0.003 vs 0.080+/-0.007; P<0.01). In addition, in the type II fibers the number of SC relative to the total number of nuclei and the number of SC per fiber area were also significantly lower in the E. This study is the first to show type II fiber atrophy in the elderly to be associated with a fiber type specific decline in SC content. The latter is evident when SC content is expressed per fiber or per fiber area. The decline in SC content might be an important factor in the etiology of type II muscle fiber atrophy, which accompanies the loss of skeletal muscle with aging. Key words: skeletal muscle, sarcopenia, muscle stem cells, atrophy, metabolism
Mathematical models for immunology:current state of the art and future research directions
The advances in genetics and biochemistry that have taken place over the last 10 years led to significant advances in experimental and clinical immunology. In turn, this has led to the development of new mathematical models to investigate qualitatively and quantitatively various open questions in immunology. In this study we present a review of some research areas in mathematical immunology that evolved over the last 10 years. To this end, we take a step-by-step approach in discussing a range of models derived to study the dynamics of both the innate and immune responses at the molecular, cellular and tissue scales. To emphasise the use of mathematics in modelling in this area, we also review some of the mathematical tools used to investigate these models. Finally, we discuss some future trends in both experimental immunology and mathematical immunology for the upcoming years
Aggressive vascular tumor mimicking posttraumatic hematoma:A case report of kaposiform hemangioendothelioma on the nose
Digital PCR-based genetic profiling from vitreous fluid as liquid biopsy for primary uveal melanoma:a proof-of-concept study
Background: Uveal melanoma is an aggressive ocular malignancy. Early molecular characterisation of primary tumours is crucial to identify those at risk of metastatic dissemination. Although tumour biopsies are being taken, liquid biopsies of ocular fluids may form a less invasive but relatively unexplored alternative. In this study, we aim to evaluate the DNA content of vitreous fluid from eyes with a uveal melanoma to obtain molecular tumour information. Methods: DNA was isolated from 65 vitreous fluid samples from enucleated eyes with a uveal melanoma and studied using digital PCR. Primary and additional driver mutations (in GNAQ, GNA11, PLCB4, CYSLTR2, BAP1, SF3B1 and EIF1AX) were investigated using accustomed targeted and drop-off assays. The copy numbers of chromosome 3p and 8q were measured using multiplex and single-nucleotide polymorphism-based assays. Our findings were compared to the molecular profile of matched primary tumours and to the clinicopathological tumour characteristics. Results: Almost all (63/65) vitreous fluids had measurable levels of DNA, but melanoma-cell derived DNA (containing the primary driver mutation) was detected in 45/65 samples (median proportion 15.5%, range 0.03-94.4%) and was associated with a larger tumour prominence, but not with any of the molecular tumour subtypes. Among the vitreous fluids with melanoma-cell derived DNA, not all samples harboured (analysable) other mutations or had sufficient statistical power to measure copy numbers. Still, additional mutations in BAP1, SF3B1 and EIF1AX were detected in 15/17 samples and chromosome 3p and 8q copy numbers matched the primary tumour in 19/21 and 18/20 samples, respectively. Collectively, a clinically-relevant molecular classification of the primary tumour could be inferred from 29/65 vitreous fluids. Conclusions: This proof-of-concept study shows that substantial amounts of DNA could be detected in vitreous fluids from uveal melanoma patients, including melanoma-cell derived DNA in 69% of the samples. Prognostically-relevant genetic alterations of the primary tumour could be identified in 45% of the patients. A follow-up study is needed to evaluate our approach in a prospective clinical context. Additionally, our work highlights improved possibilities to sensitively analyse scarce and heterogeneous tumour biopsies, with potential application in other malignancies.</p
Case report:a fatal combination of hemophagocytic lymphohistiocytosis with extensive pulmonary microvascular damage in COVID-19 pneumonia
The clinical features of COVID-19 have a considerable range from a mild illness to severe disease. Underlying pathophysiological mechanisms of the rapidly progressive, and often fatal, pulmonary disease frequently observed in COVID-19 need to be elucidated, in order to develop new treatment strategies for different disease endotypes. Fatal cases can display features of a cytokine storm, which may be related to hemophagocytic lymphohistiocytosis. Also, a spectrum of vascular changes, including microvascular damage, is known to accompany severe COVID-19. In this paper, we describe the co-occurrence of hemophagocytic lymphohistiocytosis and extensive pulmonary microvascular damage with thrombosis and its sequelae in a patient with fatal COVID-19. We believe these response patterns may be linked by common mechanisms involving hypercytokinemia and require further investigation as a fatal constellation in COVID-19, to generate appropriate treatment in patients who display these combined features.</p
Diagnostics and treatment delay in primary central nervous system lymphoma:What the neurosurgeon should know
Purpose: The gold standard for diagnostics in primary central nervous system lymphoma (PCNSL) is histopathological diagnosis after stereotactic biopsy. Yet, PCNSL has a multidisciplinary diagnostic work up, which associated with diagnostic delay and could result in treatment delay. This article offers recommendations to neurosurgeons involved in clinical decision-making regarding (novel) diagnostics and care for patients with PCNSL with the aim to improve uniformity and timeliness of the diagnostic process for patients with PCNSL. Methods: We present a mini review to discuss the role of stereotactic biopsy in the context of novel developments in diagnostics for PCNSL, as well as the role for cytoreductive surgery. Results: Cerebrospinal fluid-based diagnostics are supplementary and cannot replace stereotactic biopsy-based diagnostics. Conclusion: Histopathological diagnosis after stereotactic biopsy of the brain remains the gold standard for diagnosis. Additional diagnostics should not be a cause of diagnostic delay. There is currently no sufficient evidence supporting cytoreductive surgery in PCNSL, with recent studies showing contradictive data and suboptimal study designs.</p
- …
