336 research outputs found
Genetic contribution to the P3 in young and middle-aged adults.
Previous studies in young and adolescent twins suggested substantial genetic contributions to the amplitude and latency of the P3 evoked by targets in an oddball paradigm. Here we examined whether these findings can be generalized to adult samples. A total of 651 twins and siblings from 292 families participated in a visual oddball task. In half of the subjects the age centered around 26 (young adult cohort), in the other half the age centered around 49 (middle-aged adult cohort). P3 peak amplitude and latency were scored for 3 midline leads Pz, Cz, and Fz. No cohort differences in heritability were found. P3 amplitude (∼50%) and latency (∼45%) were moderately heritable for the 3 leads. A single genetic factor influenced latency at all electrodes, suggesting a single P3 timing mechanism. Specific genetic factors influenced amplitude at each lead, suggesting local modulation of the P3 once triggered. Genetic analysis of the full event-related potential waveform showed that P3 heritability barely changes from about 100 ms before to 100 ms after the peak. Age differences are restricted to differences in means and variances, but the proportion of genetic variance as part of the total variance of midline P3 amplitude and latency does not change from young to middle-aged adulthood
Disentangling neural processing of masked and masking stimulus by means of event-related contralateral – ipsilateral differences of EEG potentials
In spite of the excellent temporal resolution of event-related EEG potentials
(ERPs), the overlapping potentials evoked by masked and masking stimuli are hard
to disentangle. However, when both masked and masking stimuli consist of pairs
of relevant and irrelevant stimuli, one left and one right from fixation, with
the side of the relevant element varying between pairs, effects of masked and
masking stimuli can be distinguished by means of the contralateral preponderance
of the potentials evoked by the relevant elements, because the relevant elements
may independently change sides in masked and masking stimuli. Based on a
reanalysis of data from which only selected contralateral-ipsilateral effects
had been previously published, the present contribution will provide a more
complete picture of the ERP effects in a masked-priming task. Indeed, effects
evoked by masked primes and masking targets heavily overlapped in conventional
ERPs and could be disentangled to a certain degree by contralateral-ipsilateral
differences. Their major component, the N2pc, is interpreted as indicating
preferential processing of stimuli matching the target template, which process
can neither be identified with conscious perception nor with shifts of spatial
attention. The measurements showed that the triggering of response preparation
by the masked stimuli did not depend on their discriminability, and their
priming effects on the processing of the following target stimuli were
qualitatively different for stimulus identification and for response
preparation. These results provide another piece of evidence for the
independence of motor-related and perception-related effects of masked
stimuli
Whodunnit? Electrophysiological correlates of agency judgements.
Sense of agency refers to the feeling that "I" am responsible for those external events that are directly produced by one's own voluntary actions. Recent theories distinguish between a non-conceptual "feeling" of agency linked to changes in the processing of self-generated sensory events, and a higher-order judgement of agency, which attributes sensory events to the self. In the current study we explore the neural correlates of the judgement of agency by means of electrophysiology. We measured event-related potentials to tones that were either perceived or not perceived as triggered by participants' voluntary actions and related these potentials to later judgements of agency over the tones. Replicating earlier findings on predictive sensory attenuation, we found that the N1 component was attenuated for congruent tones that corresponded to the learned action-effect mapping as opposed to incongruent tones that did not correspond to the previously acquired associations between actions and tones. The P3a component, but not the N1, directly reflected the judgement of agency: deflections in this component were greater for tones judged as self-generated than for tones judged as externally produced. The fact that the outcome of the later agency judgement was predictable based on the P3a component demonstrates that agency judgements incorporate early information processing components and are not purely reconstructive, post-hoc evaluations generated at time of judgement
Effects of Multimodal Load on Spatial Monitoring as Revealed by ERPs
While the role of selective attention in filtering out irrelevant information has been extensively studied, its characteristics and neural underpinnings when multiple environmental stimuli have to be processed in parallel are much less known. Building upon a dual-task paradigm that induced spatial awareness deficits for contralesional hemispace in right hemisphere-damaged patients, we investigated the electrophysiological correlates of multimodal load during spatial monitoring in healthy participants. The position of appearance of briefly presented, lateralized targets had to be reported either in isolation (single task) or together with a concurrent task, visual or auditory, which recruited additional attentional resources (dual-task). This top-down manipulation of attentional load, without any change of the sensory stimulation, modulated the amplitude of the first positive ERP response (P1) and shifted its neural generators, with a suppression of the signal in the early visual areas during both visual and auditory dual tasks. Furthermore, later N2 contralateral components elicited by left targets were particularly influenced by the concurrent visual task and were related to increased activation of the supramarginal gyrus. These results suggest that the right hemisphere is particularly affected by load manipulations, and confirm its crucial role in subtending automatic orienting of spatial attention and in monitoring both hemispaces
The dynamics and neural correlates of audio-visual integration capacity as determined by temporal unpredictability, proactive interference, and SOA
Over 5 experiments, we challenge the idea that the capacity of audio-visual integration need be fixed at 1 item. We observe that the conditions under which audio-visual integration is most likely to exceed 1 occur when stimulus change operates at a slow rather than fast rate of presentation and when the task is of intermediate difficulty such as when low levels of proactive interference (3 rather than 8 interfering visual presentations) are combined with the temporal unpredictability of the critical frame (Experiment 2), or, high levels of proactive interference are combined with the temporal predictability of the critical frame (Experiment 4). Neural data suggest that capacity might also be determined by the quality of perceptual information entering working memory. Experiment 5 supported the proposition that audio-visual integration was at play during the previous experiments. The data are consistent with the dynamic nature usually associated with cross-modal binding, and while audio-visual integration capacity likely cannot exceed uni-modal capacity estimates, performance may be better than being able to associate only one visual stimulus with one auditory stimulus
Real‐world treatment patterns and outcomes using terlipressin in 203 patients with the hepatorenal syndrome
Background: Hepatorenal syndrome and acute kidney injury are common complications of decompensated cirrhosis, and terlipressin is recommended as first‐line vasoconstrictor therapy. However, data on its use outside of clinical trials are lacking. /
Aims: To assess practice patterns and outcomes around vasoconstrictor use for hepatorenal syndrome in UK hospitals. /
Methods: This was a multicentre chart review study. Data were extracted from medical records of patients diagnosed with hepatorenal syndrome and treated by vasoconstrictor drugs between January 2013 and December 2017 at 26 hospitals in the United Kingdom. The primary outcome was improvement of kidney function, defined as complete response (serum creatinine improved to ≤1.5 mg/dL), partial response (serum creatinine reduction of ≥20% but >1.5 mg/dL) and overall response (complete or partial response). Other outcomes included need for dialysis, mortality, liver transplantation and adverse events. /
Results: Of the 225 patients included in the analysis, 203 (90%) were treated with terlipressin (median duration, 6 days; range: 2‐24 days). Mean (±standard deviation) serum creatinine at vasopressor initiation was 3.25 ± 1.64 mg/dL. Terlipressin overall response rate was 73%. Overall response was higher in patients with mild acute kidney injury (baseline serum creatinine <2.25 mg/dL), compared to those with moderate (serum creatinine ≥2.25 mg/dL and <3.5 mg/dL) or severe (serum creatinine ≥3.5 mg/dL). Ninety‐day survival was 86% for all patients (93% for overall responders vs 66% for treatment nonresponders, P < 0.0001). /
Conclusion: Terlipressin is the most commonly prescribed vasoconstrictor for patients with hepatorenal syndrome in the United Kingdom. Treatment with terlipressin in patients with less severe acute kidney injury (serum creatinine <2.25 mg/dL) was associated with higher treatment responses, and 90‐day survival
Visual masking and the dynamics of human perception, cognition, and consciousness A century of progress, a contemporary synthesis, and future directions
The 1990s, the “decade of the brain,” witnessed major advances in the study of
visual perception, cognition, and consciousness. Impressive techniques in
neurophysiology, neuroanatomy, neuropsychology, electrophysiology, psychophysics
and brain-imaging were developed to address how the nervous system transforms
and represents visual inputs. Many of these advances have dealt with the
steady-state properties of processing. To complement this “steady-state
approach,” more recent research emphasized the importance of dynamic aspects of
visual processing. Visual masking has been a paradigm of choice for more than a
century when it comes to the study of dynamic vision. A recent workshop
(http://lpsy.epfl.ch/VMworkshop/), held in Delmenhorst, Germany,
brought together an international group of researchers to present
state-of-the-art research on dynamic visual processing with a focus on visual
masking. This special issue presents peer-reviewed contributions by the workshop
participants and provides a contemporary synthesis of how visual masking can
inform the dynamics of human perception, cognition, and consciousness
The PEER Collaborative: Supporting Engineering Education Research Faculty with Near-peer Mentoring Unconference Workshops
The PEER Collaborative National Network is a national peer mentoring network for early career tenure-track or mid-career tenured faculty who conduct and are primarily evaluated based on their research related to engineering education. This paper discusses the development, logistics, and outcomes of two PEER workshops built around a community of practice framework. Data from internal and external evaluations are presented to provide insights into aspects that worked well and aspects that need further development. Additionally, by reflecting on the workshops, participants crafted vignettes describing the impact the PEER workshops had on their personal and professional lives. The paper concludes with a discussion on the future of PEER (and potential spin-off groups from the PEER cohorts), and the changes that will be made in future workshops. Recommendations are provided for other organizers interested in developing successful “near peer” groups to address specific community needs
Neuro-cognitive mechanisms of conscious and unconscious visual perception: From a plethora of phenomena to general principles
Psychological and neuroscience approaches have promoted much progress in
elucidating the cognitive and neural mechanisms that underlie phenomenal visual
awareness during the last decades. In this article, we provide an overview of
the latest research investigating important phenomena in conscious and
unconscious vision. We identify general principles to characterize conscious and
unconscious visual perception, which may serve as important building blocks for
a unified model to explain the plethora of findings. We argue that in particular
the integration of principles from both conscious and unconscious vision is
advantageous and provides critical constraints for developing adequate
theoretical models. Based on the principles identified in our review, we outline
essential components of a unified model of conscious and unconscious visual
perception. We propose that awareness refers to consolidated
visual representations, which are accessible to the entire brain and therefore
globally available. However, visual awareness not only depends
on consolidation within the visual system, but is additionally the result of a
post-sensory gating process, which is mediated by higher-level cognitive control
mechanisms. We further propose that amplification of visual representations by
attentional sensitization is not exclusive to the domain of conscious
perception, but also applies to visual stimuli, which remain unconscious.
Conscious and unconscious processing modes are highly interdependent with
influences in both directions. We therefore argue that exactly this
interdependence renders a unified model of conscious and unconscious visual
perception valuable. Computational modeling jointly with focused experimental
research could lead to a better understanding of the plethora of empirical
phenomena in consciousness research
- …
