4,450 research outputs found

    Neutron irradiation effect on SiPMs up to Φneq\Phi_{neq} = 5 ×\times 1014^{14} cm2^{-2}

    Full text link
    Silicon Photo-Multipliers (SiPM) are becoming the photo-detector of choice for increasingly more particle detection applications, from fundamental physics to medical and societal applications. One major consideration for their use at high-luminosity colliders is the radiation damage induced by hadrons, which leads to a dramatic increase of the dark count rate. KETEK SiPMs have been exposed to various fluences of reactor neutrons up to Φneq\Phi_{neq} = 5×\times1014^{14} cm2^{-2} (1 MeV equivalent neutrons). Results from the I-V, and C-V measurements for temperatures between -30^\circC and ++30^\circC are presented. We propose a new method to quantify the effect of radiation damage on the SiPM performance. Using the measured dark current the single pixel occupation probability as a function of temperature and excess voltage is determined. From the pixel occupation probability the operating conditions for given requirements can be optimized. The method is qualitatively verified using current measurements with the SiPM illuminated by blue LED light

    Compton-thick AGN and the Synthesis of the Cosmic X-ray Background: the Suzaku Perspective

    Full text link
    We discuss the abundance of Compton-thick AGN as estimated by the most recent population synthesis models of the cosmic X-ray background. Only a small fraction of these elusive objects have been detected so far, in line with the model expectations. The advances expected by the broad band detectors on board Suzaku are briefly reviewed.Comment: proceedings of "The Extreme Universe in the Suzaku Era", Kyoto 4-8 December 2006, to be published in Progress of Theoretical Physics, Supplemen

    The dust content of QSO hosts at high redshift

    Full text link
    Infrared observations of high-z quasar (QSO) hosts indicate the presence of large masses of dust in the early universe. When combined with other observables, such as neutral gas masses and star formation rates, the dust content of z~6 QSO hosts may help constraining their star formation history. We have collected a database of 58 sources from the literature discovered by various surveys and observed in the FIR. We have interpreted the available data by means of chemical evolution models for forming proto-spheroids, investigating the role of the major parameters regulating star formation and dust production. For a few systems, given the derived small dynamical masses, the observed dust content can be explained only assuming a top-heavy initial mass function, an enhanced star formation efficiency and an increased rate of dust accretion. However, the possibility that, for some systems, the dynamical mass has been underestimated cannot be excluded. If this were the case, the dust mass can be accounted for by standard model assumptions. We provide predictions regarding the abundance of the descendants of QSO hosts; albeit rare, such systems should be present and detectable by future deep surveys such as Euclid already at z>4.Comment: 22 pages, 8 figures, MNRAS, accepte

    The high-redshift Universe with the International X-ray Observatory

    Full text link
    We discuss some of the main open issues related to the light-up and evolution of the first accreting sources powering high redshift luminous quasars. We discuss the perspectives of future deep X-ray surveys with the International X-ray Observatory and possible synergies with the Wide Field X-ray Telescope.Comment: 6 pages, 6 figures. Proceedings of "The Wide Field X-ray Telescope Workshop", held in Bologna, Italy, Nov. 25-26 2009. To appear in Memorie della Societ\`a Astronomica Italiana 2010 (arXiv:1010.5889

    On the nature of the X-ray absorption in the Seyfert 2 galaxy NGC 4507

    Get PDF
    We present results of the ASCA observation of the Seyfert 2 galaxy NGC 4507. The 0.5-10 keV spectrum is rather complex and consists of several components: (1) a hard X-ray power law heavily absorbed by a column density of about 3 10^23 cm^-2, (2) a narrow Fe Kalpha line at 6.4 keV, (3) soft continuum emission well above the extrapolation of the absorbed hard power law, (4) a narrow emission line at about 0.9 keV. The line energy, consistent with highly ionized Neon (NeIX), may indicate that the soft X-ray emission derives from a combination of resonant scattering and fluorescence in a photoionized gas. Some contribution to the soft X-ray spectrum from thermal emission, as a blend of Fe L lines, by a starburst component in the host galaxy cannot be ruled out with the present data.Comment: 8 pages, LateX, 5 figures (included). Uses mn.sty and epsfig.sty. To appear in MNRA

    Constraining the true nature of an exotic binary in the core of NGC 6624

    Full text link
    We report on the identification of the optical counterpart to Star1, the exotic object serendipitously discovered by Deutsch et al. in the core of the Galactic globular cluster NGC 6624. Star1 has been classified by Deutsch et al. as either a quiescent Cataclysmic Variable or a low-mass X-ray binary. Deutsch et al. proposed StarA as possible optical counterpart to this object. We used high-resolution images obtained with the Hubble Space Telescope to perform a variability analysis of the stars close to the nominal position of Star1. While no variability was detected for StarA, we found another star, here named COM_Star1, showing a clear sinusoidal light modulation with amplitude \Delta m_F435W~0.7 mag and orbital period of P_orb~98 min. The shape of the light curve is likely caused by strong irradiation by the primary heating one hemisphere of the companion, thus suggesting a quite hot primary.Comment: Accepted for publication by ApJ Letters; 6 pages, 5 figure

    X-ray observation of ULAS J1120+0641, the most distant quasar at z=7.08

    Full text link
    We aim at probing the emission mechanism of the accreting super massive black holes in the high redshift Universe. We study the X-ray spectrum of ULAS1120+0641, the highest redshift quasar detected so far at z=7.085, which has been deeply observed (340 ks) by XMM-Newton. Despite the long integration time the spectral analysis is limited by the poor statistics, with only 150 source counts being detected. We measured the spectrum in the 2-80 keV rest-frame (0.3-10 keV observed) energy band. Assuming a simple power law model we find a photon index of 2.0+/-0.3 and a luminosity of 6.7+/-0.3 10^44 erg/s in the 2-10 keV band, while the intrinsic absorbing column can be only loosely constrained (NH< 1E23 cm^-2). Combining our data with published data we calculate that the X-ray-to-optical spectral index alpha_OX is1.8+/-0.1, in agreement with the alpha_OX-UV luminosity correlation valid for lower redshift quasars. We expanded to high energies the coverage of the spectral energy distribution of ULAS1120+0641. This is the second time that a z >6 quasar has been investigated through a deep X-ray observation. In agreement with previous studies of z~6 AGN samples, we do not find any hint of evolution in the broadband energy distribution. Indeed from our dataset ULAS 1120+0641 is indistinguishable from the population of optically bright quasar at lower redshift.Comment: 5 pages, 4 figures, A&A in press; updated with the accepted versio

    The evolution of obscured accretion

    Full text link
    Our current understanding of the evolution of obscured accretion onto supermassive black holes is reviewed. We consider the literature results on the relation between the fraction of moderately obscured, Compton-thin AGN and redshift, and discuss the biases which possibly affect the various measurements. Then, we discuss a number of methods - from ultradeep X-ray observations to the detection of high-ionization optical emission lines - to select the population of the most heavily obscured, Compton-thick AGN, whose cosmological evolution is basically unknown. The space density of heavily obscured AGN measured through different techniques is discussed and compared with the predictions by current synthesis models of the X-ray background. Preliminary results from the first half of the 3 Ms XMM observation of the Chandra Deep Field South (CDFS) are also presented. The prospects for population studies of heavily obscured AGN with future planned or proposed X-ray missions are finally discussed.Comment: 6 pages, 2 figures. Invited talk at the conference "X-ray Astronomy 2009: Present status, multiwavelength approach and future perspectives", September 2009, Bologna. To appear in AIP Conf. Proc. (editors: A. Comastri, M. Cappi, L. Angelini)
    corecore