1,558 research outputs found
African vegetable diversity in the limelight: project activities by ProNIVA.
Poster presented at Botanical Congress. Hamburg (Germany), 3-7 Sep 200
Kinetic pathways of multi-phase surfactant systems
The relaxation following a temperature quench of two-phase (lamellar and
sponge phase) and three-phase (lamellar, sponge and micellar phase) samples,
has been studied in an SDS/octanol/brine system. In the three-phase case we
have observed samples that are initially mainly sponge phase with lamellar and
micellar phase on the top and bottom respectively. Upon decreasing temperature
most of the volume of the sponge phase is replaced by lamellar phase. During
the equilibriation we have observed three regimes of behaviour within the
sponge phase: (i) disruption in the sponge texture, then (ii) after the sponge
phase homogenises there is a lamellar nucleation regime and finally (iii) a
bizarre plume connects the lamellar phase with the micellar phase. The
relaxation of the two-phase sample proceeds instead in two stages. First
lamellar drops nucleate in the sponge phase forming a onion `gel' structure.
Over time the lamellar structure compacts while equilibriating into a two phase
lamellar/sponge phase sample. We offer possible explanatioins for some of these
observations in the context of a general theory for phase kinetics in systems
with one fast and one slow variable.Comment: 1 textfile, 20 figures (jpg), to appear in PR
Coiling Instability of Multilamellar Membrane Tubes with Anchored Polymers
We study experimentally a coiling instability of cylindrical multilamellar
stacks of phospholipid membranes, induced by polymers with hydrophobic anchors
grafted along their hydrophilic backbone. Our system is unique in that coils
form in the absence of both twist and adhesion. We interpret our experimental
results in terms of a model in which local membrane curvature and polymer
concentration are coupled. The model predicts the occurrence of maximally tight
coils above a threshold polymer occupancy. A proper comparison between the
model and experiment involved imaging of projections from simulated coiled
tubes with maximal curvature and complicated torsions.Comment: 11 pages + 7 GIF figures + 10 JPEG figure
Immunological Interactive Effects between Pollen Grains and Their Cytoplasmic Granules on Brown Norway Rats
International audienceBackgroundGrass pollen is one of the most important aeroallergen vectors in Europe. Under some meteorological factors, pollen grains can release pollen cytoplasmic granules (PCGs). PCGs induce allergic responses. Several studies have shown that during a period of thunderstorms the number of patients with asthma increases because of higher airborne concentrations of PCGs.ObjectiveThe aims of the study were to assess the allergenicity of interactive effects between pollen and PCGs and to compare it with allergenicity of Timothy grass pollen and PCGs in Brown Norway rats.MethodsRats were sensitized (day 0) and challenged (day 21) with pollen grains and/or PCGs. Four groups were studied: pollen-pollen (PP), PCGs-PCGs (GG), pollen-PCGs (PG), and PCGs-pollen (GP). Blood samples, bronchoalveolar lavage fluid, and bronchial lymph node were collected at day 25. IgE and IgG1 levels in sera were assessed by enzyme-linked immunosorbent assay. Alveolar cells, protein, and cytokine concentrations were quantified in bronchoalveolar lavage fluid. T-cell proliferation, in response to pollen or granules, was performed by lymph node assay.ResultsInteractive effects between pollen and PCGs increased IgE and IgG1 levels when compared with those of the negative control. These increases were lower than those of the PP group but similar to the levels obtained by the GG group. Whatever was used in the sensitization and/or challenge phase, PCGs increased lymphocyte and Rantes levels compared with those of the pollen group. The interactive effects increased IL-1α and IL-1β compared with those of the PP and GG groups.ConclusionsImmunologic interactive effects have been shown between pollen and PCGs. For humoral and cellular allergic responses, interactive effects between the 2 aeroallergenic sources used in this study seem to be influenced mainly by PCGs
Evaluation of inhaler technique and achievement and maintenance of mastery of budesonide/formoterol Spiromax® compared with budesonide/formoterol Turbuhaler® in adult patients with asthma: the Easy Low Instruction Over Time (ELIOT) study
Background: Incorrect inhaler technique is a common cause of poor asthma control. This two-phase pragmatic study evaluated inhaler technique mastery and maintenance of mastery with DuoResp® (budesonide-formoterol [BF]) Spiromax® compared with Symbicort® (BF) Turbuhaler® in patients with asthma who were receiving inhaled corticosteroids/long-acting β2-agonists. Methods: In the initial cross-sectional phase, patients were randomized to a 6-step training protocol with empty Spiromax and Turbuhaler devices. Patients initially demonstrating ≥1 error with their current device, and then achieving mastery with both Spiromax and Turbuhaler (absence of healthcare professional [HCP]-observed errors), were eligible for the longitudinal phase. In the longitudinal phase, patients were randomized to BF Spiromax or BF Turbuhaler. Co-primary endpoints were the proportions of patients achieving device mastery after three training steps and maintaining device mastery (defined as the absence of HCP-observed errors after 12 weeks of use). Secondary endpoints included device preference, handling error frequency, asthma control, and safety. Exploratory endpoints included assessment of device mastery by an independent external expert reviewing video recordings of a subset of patients. Results: Four hundred ninety-three patients participated in the cross-sectional phase, and 395 patients in the longitudinal phase. In the cross-sectional phase, more patients achieved device mastery after three training steps with Spiromax (94%) versus Turbuhaler (87%) (odds ratio [OR] 3.77 [95% confidence interval (CI) 2.05–6.95], p < 0.001). Longitudinal phase data indicated that the odds of maintaining inhaler mastery at 12 weeks were not statistically significantly different (OR 1.26 [95% CI 0.80–1.98], p = 0.316). Asthma control improved in both groups with no significant difference between groups (OR 0.11 [95% CI -0.09–0.30]). An exploratory analysis indicated that the odds of maintaining independent expert-verified device mastery were significantly higher for patients using Spiromax versus Turbuhaler (OR 2.11 [95% CI 1.25–3.54]). Conclusions: In the cross-sectional phase, a significantly greater proportion of patients using Spiromax versus Turbuhaler achieved device mastery; in the longitudinal phase, the proportion of patients maintaining device mastery with Spiromax versus Turbuhaler was similar. An exploratory independent expert-verified analysis found Spiromax was associated with higher levels of device mastery after 12 weeks. Asthma control was improved by treatment with both BF Spiromax and BF Turbuhaler
Amyloid Plaques Beyond Aβ: A Survey of the Diverse Modulators of Amyloid Aggregation
Aggregation of the amyloid-β (Aβ) peptide is strongly correlated with Alzheimer’s disease (AD). Recent research has improved our understanding of the kinetics of amyloid fibril assembly and revealed new details regarding different stages in plaque formation. Presently, interest is turning toward studying this process in a holistic context, focusing on cellular components which interact with the Aβ peptide at various junctures during aggregation, from monomer to cross-β amyloid fibrils. However, even in isolation, a multitude of factors including protein purity, pH, salt content, and agitation affect Aβ fibril formation and deposition, often producing complicated and conflicting results. The failure of numerous inhibitors in clinical trials for AD suggests that a detailed examination of the complex interactions that occur during plaque formation, including binding of carbohydrates, lipids, nucleic acids, and metal ions, is important for understanding the diversity of manifestations of the disease. Unraveling how a variety of key macromolecular modulators interact with the Aβ peptide and change its aggregation properties may provide opportunities for developing therapies. Since no protein acts in isolation, the interplay of these diverse molecules may differentiate disease onset, progression, and severity, and thus are worth careful consideration
Cancer stem cells display extremely large evolvability alternating plastic and rigid networks as a potential mechanism Network models, novel therapeutic target strategies, and the contributions of hypoxia, inflammation and cellular senescence
Cancer is increasingly perceived as a systems-level, network phenomenon. The major trend of malignant transformation can be described as a two-phase process, where an initial increase of network plasticity is followed by a decrease of plasticity at late stages of tumor development. The fluctuating intensity of stress factors, like hypoxia, inflammation and the either cooperative or hostile interactions of tumor inter-cellular networks, all increase the adaptation potential of cancer cells. This may lead to the bypass of cellular senescence, and to the development of cancer stem cells. We propose that the central tenet of cancer stem cell definition lies exactly in the indefinability of cancer stem cells. Actual properties of cancer stem cells depend on the individual "stress-history" of the given tumor. Cancer stem cells are characterized by an extremely large evolvability (i.e. a capacity to generate heritable phenotypic variation), which corresponds well with the defining hallmarks of cancer stem cells: the possession of the capacity to self-renew and to repeatedly re-build the heterogeneous lineages of cancer cells that comprise a tumor in new environments. Cancer stem cells represent a cell population, which is adapted to adapt. We argue that the high evolvability of cancer stem cells is helped by their repeated transitions between plastic (proliferative, symmetrically dividing) and rigid (quiescent, asymmetrically dividing, often more invasive) phenotypes having plastic and rigid networks. Thus, cancer stem cells reverse and replay cancer development multiple times. We describe network models potentially explaining cancer stem cell-like behavior. Finally, we propose novel strategies including combination therapies and multi-target drugs to overcome the Nietzschean dilemma of cancer stem cell targeting: "what does not kill me makes me stronger"
Neuroglia at the crossroads of homoeostasis, metabolism and signalling: evolution of the concept
Ever since Rudolf Virchow in 1858 publicly announced his apprehension of neuroglia being a true connective substance, this concept has been evolving to encompass a heterogeneous population of cells with various forms and functions. We briefly compare the 19th–20th century perspectives on neuroglia with the up-to-date view of these cells as an integral, and possibly integrating, component of brain metabolism and signalling in heath and disease. We conclude that the unifying property of otherwise diverse functions of various neuroglial cell sub-types is to maintain brain homoeostasis at different levels, from whole organ to molecular
White-tailed Deer Browsing and Rubbing Preferences for Trees and Shrubs That Produce Nontimber Forest Products
Nontimber forest products (food, herbal medicinals, and woody floral and handicraft products) produced in forest, agroforestry, and horticultural systems can be important sources of income to landowners. White-tailed deer (Odocoileus virginianus) can reduce the quality, quantity, and profitability of forest products by browsing twigs and rubbing stems, resulting in direct and indirect losses to production enterprises. We evaluated deer damage (frequency and intensity of browsing and rubbing) sustained by 26 species of trees and shrubs, the relationships among morphological features of trees and shrubs to damage levels, and the economic impacts of deer damage on the production of nontimber forest products. Levels of browsing were high (frequency \u3e93% and intensity \u3e50%) in most species of trees and shrubs, with the highest intensity (\u3e60%) occurring in chinese chestnut (Castanea mollisima) and dogwood (Cornus spp.), and the lowest (Ginkgo biloba), curly willow (Salix matsudana), ‘Scarlet Curls’ curly willow, smooth sumac (Rhus glabra), and pussy willow (Salix caprea). Species of trees or shrubs with one or a few stout stems unprotected by dense branching [e.g., american elderberry (Sambucus canadensis), smooth sumac, and curly willow] sustained the most damage by rubbing. Trees and shrubs with many small diameter stems or with dense tangled branching [e.g. redozier dogwood (Cornus sericea), forsythia (Forsythia suspensa), ‘Flame’ willow (Salix alba), and ‘Streamco’ basket willow (Salix purpurea)] were damaged the least by rubbing. Annual economic costs of deer damage to producers of nontimber forest products can range from 1595/acre for curly willow
- …
