430 research outputs found

    Correlated interaction fluctuations in photosynthetic complexes

    Full text link
    The functioning and efficiency of natural photosynthetic complexes is strongly influenced by their embedding in a noisy protein environment, which can even serve to enhance the transport efficiency. Interactions with the environment induce fluctuations of the transition energies of and interactions between the chlorophyll molecules, and due to the fact that different fluctuations will partially be caused by the same environmental factors, correlations between the various fluctuations will occur. We argue that fluctuations of the interactions should in general not be neglected, as these have a considerable impact on population transfer rates, decoherence rates and the efficiency of photosynthetic complexes. Furthermore, while correlations between transition energy fluctuations have been studied, we provide the first quantitative study of the effect of correlations between interaction fluctuations and transition energy fluctuations, and of correlations between the various interaction fluctuations. It is shown that these additional correlations typically lead to changes in interchromophore transfer rates, population oscillations and can lead to a limited enhancement of the light harvesting efficiency

    Magnetic Correlations in the Two Dimensional Anderson-Hubbard Model

    Full text link
    The two dimensional Hubbard model in the presence of diagonal and off-diagonal disorder is studied at half filling with a finite temperature quantum Monte Carlo method. Magnetic correlations as well as the electronic compressibility are calculated to determine the behavior of local magnetic moments, the stability of antiferromagnetic long range order (AFLRO), and properties of the disordered phase. The existence of random potentials (diagonal or ``site'' disorder) leads to a suppression of local magnetic moments which eventually destroys AFLRO. Randomness in the hopping elements (off-diagonal disorder), on the other hand, does not significantly reduce the density of local magnetic moments. For this type of disorder, at half-filling, there is no ``sign-problem'' in the simulations as long as the hopping is restricted between neighbor sites on a bipartite lattice. This allows the study of sufficiently large lattices and low temperatures to perform a finite-size scaling analysis. For off-diagonal disorder AFLRO is eventually destroyed when the fluctuations of antiferromagnetic exchange couplings exceed a critical value. The disordered phase close to the transition appears to be incompressible and shows an increase of the uniform susceptibility at low temperatures.Comment: 10 pages, REVTeX, 14 figures included using psfig.st

    Two-dimensional Anderson-Hubbard model in DMFT+Sigma approximation

    Full text link
    Density of states, dynamic (optical) conductivity and phase diagram of paramagnetic two-dimensional Anderson-Hubbard model with strong correlations and disorder are analyzed within the generalized dynamical mean-field theory (DMFT+Sigma approximation). Strong correlations are accounted by DMFT, while disorder is taken into account via the appropriate generalization of the self-consistent theory of localization. We consider the two-dimensional system with the rectangular "bare" density of states (DOS). The DMFT effective single impurity problem is solved by numerical renormalization group (NRG). Phases of "correlated metal", Mott insulator and correlated Anderson insulator are identified from the evolution of density of states, optical conductivity and localization length, demonstrating both Mott-Hubbard and Anderson metal-insulator transitions in two-dimensional systems of the finite size, allowing us to construct the complete zero-temperature phase diagram of paramagnetic Anderson-Hubbard model. Localization length in our approximation is practically independent of the strength of Hubbard correlations. However, the divergence of localization length in finite size two-dimensional system at small disorder signifies the existence of an effective Anderson transition.Comment: 10 pages, 10 figures, improve phase diagra

    Drude weight and dc-conductivity of correlated electrons

    Full text link
    The Drude weight DD and the dc-conductivity σdc(T)\sigma_{dc} (T) of strongly correlated electrons are investigated theoretically. Analytic results are derived for the homogeneous phase of the Hubbard model in d=d = \infty dimensions, and for spinless fermions in this limit with 1/d1/d-corrections systematically included to lowest order. It is found that σdc(T)\sigma_{dc}(T) is finite for all T>0T > 0, displaying Fermi liquid behavior, σdc1/T2\sigma_{dc} \propto 1/T^2, at low temperatures. The validity of this result for finite dimensions is examined by investigating the importance of Umklapp scattering processes and vertex corrections. A finite dc-conductivity for T>0T > 0 is argued to be a generic feature of correlated lattice electrons in not too low dimensions.Comment: 15 pages, uuencoded compressed PS-fil

    A comparative study of Tam3 and Ac transposition in transgenic tobacco and petunia plants

    Get PDF
    Transposition of the Anthirrinum majus Tam3 element and the Zea mays Ac element has been monitored in petunia and tobacco plants. Plant vectors were constructed with the transposable elements cloned into the leader sequence of a marker gene. Agrobacterium tumefaciens-mediated leaf disc transformation was used to introduce the transposable element constructs into plant cells. In transgenic plants, excision of the transposable element restores gene expression and results in a clearly distinguishable phenotype. Based on restored expression of the hygromycin phosphotransferase II (HPTII) gene, we established that Tam3 excises in 30% of the transformed petunia plants and in 60% of the transformed tobacco plants. Ac excises from the HPTII gene with comparable frequencies (30%) in both plant species. When the β-glucuronidase (GUS) gene was used to detect transposition of Tam3, a significantly lower excision frequency (13%) was found in both plant species. It could be shown that deletion of parts of the transposable elements Tam3 and Ac, removing either one of the terminal inverted repeats (TIR) or part of the presumptive transposase coding region, abolished the excision from the marker genes. This demonstrates that excision of the transposable element Tam3 in heterologous plant species, as documented for the autonomous element Ac, also depends on both properties. Southern blot hybridization shows the expected excision pattern and the reintegration of Tam3 and Ac elements into the genome of tobacco plants.

    Mott-Hubbard Transition and Anderson Localization: Generalized Dynamical Mean-Field Theory Approach

    Full text link
    Density of states, dynamic (optical) conductivity and phase diagram of strongly correlated and strongly disordered paramagnetic Anderson-Hubbard model are analyzed within the generalized dynamical mean field theory (DMFT+\Sigma approximation). Strong correlations are accounted by DMFT, while disorder is taken into account via the appropriate generalization of self-consistent theory of localization. The DMFT effective single impurity problem is solved by numerical renormalization group (NRG) and we consider the three-dimensional system with semi-elliptic density of states. Correlated metal, Mott insulator and correlated Anderson insulator phases are identified via the evolution of density of states and dynamic conductivity, demonstrating both Mott-Hubbard and Anderson metal-insulator transition and allowing the construction of complete zero-temperature phase diagram of Anderson-Hubbard model. Rather unusual is the possibility of disorder induced Mott insulator to metal transition.Comment: 15 pages, 16 figure

    Dynamical Mean-Field Solution for a Model of Metal-Insulator Transitions in Moderately Doped Manganites

    Get PDF
    We propose that a specific spatial configuration of lattice sites that energetically favor {\it 3+} or {\it 4+} Mn ions in moderately doped manganites constitutes approximately a spatially random two-energy-level system. Such an effect results in a mechanism of metal-insulator transitions that appears to be different from both the Anderson transition and the Mott-Hubbard transition. Correspondingly, a disordered Kondo lattice model is put forward, whose dynamical mean-field solution agrees reasonably with experiments.Comment: 4 pages, 2 eps figures, Revtex. First submitted to PRL on May 16, 199

    "Optical conductance fluctuations: diagrammatic analysis in Landauer approach and non-universal effects"

    Get PDF
    The optical conductance of a multiple scattering medium is the total transmitted light of a diffuse incoming beam. This quantity, very analogous to the electronic conductance, exhibits universal conductance fluctuations. We perform a detailed diagrammatic analysis of these fluctuations. With a Kadanoff-Baym technique all the leading diagrams are systematically generated. A cancellation of the short distance divergencies occurs, that yields a well behaved theory. The analytical form of the fluctuations is calculated and applied to optical systems. Absorption and internal reflections reduce the fluctuations significantly.Comment: 25 pages Revtex 3.0, 18 seperate postscript figure

    Meta-GWAS Accuracy and Power (MetaGAP) Calculator Shows that Hiding Heritability Is Partially Due to Imperfect Genetic Correlations across Studies

    Get PDF
    Large-scale genome-wide association results are typically obtained from a fixed-effects meta-analysis of GWAS summary statistics from multiple studies spanning different regions and/or time periods. This approach averages the estimated effects of genetic variants across studies. In case genetic effects are heterogeneous across studies, the statistical power of a GWAS and the predictive accuracy of polygenic scores are attenuated, contributing to the so-called ‘missing heritability’. Here, we describe the online Meta-GWAS Accuracy and Power (MetaGAP) calculator (available at www.devlaming.eu) which quantifies this attenuation based on a novel multi-study framework. By means of simulation studies, we show that under a wide range of genetic architectures, the statistical power and predictive accuracy provided by this calculator are accurate. We compare the predictions from the MetaGAP calculator with actual results obtained in the GWAS literature. Specifically, we use genomic-relatedness-matrix restricted maximum likelihood to estimate the SNP heritability and cross-study genetic correlation of height, BMI, years of education, and self-rated health in three large samples. These estimates are used as input parameters for the MetaGAP calculator. Results from the calculator suggest that cross-study heterogeneity has led to attenuation of statistical power and predictive accuracy in recent large-scale GWAS efforts on these traits (e.g., for years of education, we estimate a relative loss of 51–62% in the number of genome-wide significant loci and a relative loss in polygenic score R2of 36–38%). Hence, cross-study heterogeneity contributes to the missing heritability

    Coherent Potential Approximation for `d - wave' Superconductivity in Disordered Systems

    Get PDF
    A Coherent Potential Approximation is developed for s-wave and d-wave superconductivity in disordered systems. We show that the CPA formalism reproduces the standard pair-breaking formula, the self-consistent Born Approximation and the self-consistent T-matrix approximation in the appropriate limits. We implement the theory and compute T_c for s-wave and d-wave pairing using an attractive nearest neighbor Hubbard model featuring both binary alloy disorder and a uniform distribution of scattering site potentials. We determine the density of states and examine its consequences for low temperature heat capacity. We find that our results are in qualitative agreement with measurements on Zn doped YBCO superconductors.Comment: 35 pages, 23 figures, submitted to Phys Rev.
    corecore