2,456,980 research outputs found
Method and apparatus for making a heat insulating and ablative structure Patent
Method and apparatus for fabrication of heat insulating and ablative reentry structur
Geometrically Intrinsic Nonlinear Recursive Filters I: Algorithms
The Geometrically Intrinsic Nonlinear Recursive Filter, or GI Filter, is
designed to estimate an arbitrary continuous-time Markov diffusion process X
subject to nonlinear discrete-time observations. The GI Filter is fundamentally
different from the much-used Extended Kalman Filter (EKF), and its second-order
variants, even in the simplest nonlinear case, in that: (i) It uses a quadratic
function of a vector observation to update the state, instead of the linear
function used by the EKF. (ii) It is based on deeper geometric principles,
which make the GI Filter coordinate-invariant. This implies, for example, that
if a linear system were subjected to a nonlinear transformation f of the
state-space and analyzed using the GI Filter, the resulting state estimates and
conditional variances would be the push-forward under f of the Kalman Filter
estimates for the untransformed system - a property which is not shared by the
EKF or its second-order variants.
The noise covariance of X and the observation covariance themselves induce
geometries on state space and observation space, respectively, and associated
canonical connections. A sequel to this paper develops stochastic differential
geometry results - based on "intrinsic location parameters", a notion derived
from the heat flow of harmonic mappings - from which we derive the
coordinate-free filter update formula. The present article presents the
algorithm with reference to a specific example - the problem of tracking and
intercepting a target, using sensors based on a moving missile. Computational
experiments show that, when the observation function is highly nonlinear, there
exist choices of the noise parameters at which the GI Filter significantly
outperforms the EKF.Comment: 22 pages, 4 figure
Dynamic tooth loads and stressing for high contact ratio spur gears
An analysis and computer program were developed for calculating the dynamic gear tooth loading and root stressing for high contact ratio gearing (HCRG) as well as LCRG. The analysis includes the effects of the variable tooth stiffness during the mesh, tooth profile modification, and gear errors. The calculation of the tooth root stressing caused by the dynamic gear tooth loads is based on a modified Heywood gear tooth stress analysis, which appears more universally applicable to both LCRG and HCRG. The computer program is presently being expanded to calculate the tooth contact stressing and PV values. Sample application of the gear program to equivalent LCRG (1.566 contact ratio) and HCRG (2.40 contact ratio) revealed the following: (1) the operating conditions and dynamic characteristics of the gear system an affect the gear tooth loading and root stressing, and therefore, life significantly; (2) the length of the profile modification affect the tooth loading and root stressing significantly, the amount depending on the applied load, speed, and contact ratio; and (3) the effect of variable tooth stiffness is small, shifting and increasing the response peaks slightly from those for constant tooth stiffness
On Axiomatization of Inconsistency Indicators for Pairwise Comparisons
We examine the notion of inconsistency in pairwise comparisons and propose an
axiomatization which is independent of any method of approximation or the
inconsistency indicator definition (e.g., Analytic Hierarchy Process, AHP). It
has been proven that the eigenvalue-based inconsistency (proposed as a part of
AHP) is incorrect.Comment: Enhanced text, with 21 pages and 3 figures, proves that arbitrarily
inaccurate pairwise matrices are considered acceptable by theories with a
inconsistency based on the principal eigenvalue (e.g., AHP). CPC (corner
pairwise comparisons) matrix is the crucial part of this study as it
invalidates any eigenvalue-based inconsistency. All comments are highly
appreciate
Interim report on the hydrologic features of the Green Swamp area in Central Florida
The Green Swamp area in central Florida is another
area where man is developing agricultural land from marginal
land. Though the area is by no means as extensive as
that of the Everglades, the present efforts for its development
are similar to the early efforts for developing the Everglades
in that many miles of canals and ditches have been
constructed to improve the drainage.
Lest the early mistakes of the Everglades be repeated,
the Florida Department of Water Resources considered that
an appraisal of the physical and hydrologic features of the
area was needed to determine the broad effects of draining
and developing the swamp. This reconnaissance provides information required
by the State of Florida for determining its responsibility
and policy in regard to the Green Swamp area and
for formulating future plans for water management of the
area.
Some of the features that have been determined are:
the amount of rainfall on the area; the pattern of surfacewater
drainage; the amount and direction of surface-water
runoff; the direction of ground-water movement; the interrelationship
of rainfall, surface water, and ground water;
the effects of improved drainage facilities'; and the effects
of the hydrologic environment on the chemical quality of
water of the area.(PDF contains 106 pages.
New polyimide polymer has excellent processing characterisitcs with improved thermo-oxidative and hydrolytic stabilities
Polyimide P10P and its processing technique apply to most high temperature plastic products, devices and castings. Prepolymer, when used as varnish, impregnates fibers directly and is able to be processed into advanced composities. Material may also be used as molding powder and adhesive
Heat transfer device
A heat transfer device is characterized by an hermetically sealed tubular housing including a tubular shell terminating in spaced end plates, and a tubular mesh wick concentrically arranged and operatively supported within said housing. The invention provides an improved wicking restraint formed as an elongated and radially expanded tubular helix concentrically related to the wick and adapted to be axially foreshortened and radially expanded into engagement with the wick in response to an axially applied compressive load. The wick is continuously supported in a contiguous relationship with the internal surfaces of the shell
Process for preparation of high-molecular- weight polyaryloxysilanes Patent
Process for preparing high molecular weight polyaryloxysilanes from lower molecular weight form
Compliance and stress sensitivity of spur gear teeth
The magnitude and variation of tooth pair compliance with load position affects the dynamics and loading significantly, and the tooth root stressing per load varies significantly with load position. Therefore, the recently developed time history, interactive, closed form solution for the dynamic tooth loads for both low and high contact ratio spur gears was expanded to include improved and simplified methods for calculating the compliance and stress sensitivity for three involute tooth forms as a function of load position. The compliance analysis has an improved fillet/foundation. The stress sensitivity analysis is a modified version of the Heywood method but with an improvement in the magnitude and location of the peak stress in the fillet. These improved compliance and stress sensitivity analyses are presented along with their evaluation using test, finite element, and analytic transformation results, which showed good agreement
- …
