17,454 research outputs found

    Development of heat flux sensors in turbine airfoils

    Get PDF
    The objective is to develop heat flux sensors suitable for use on turbine airfoils and to verify the operation of the heat flux measurement techniques through laboratory experiments. The requirements for a program to investigate the measurement of heat flux on airfoils in areas of strong non-one-dimensional flow were also identified

    Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens.

    Get PDF
    The atmospheric chemistry of the 2- to 4-ring polycyclic aromatic hydrocarbons (PAH), which exist mainly in the gas phase in the atmosphere, is discussed. The dominant loss process for the gas-phase PAH is by reaction with the hydroxyl radical, resulting in calculated lifetimes in the atmosphere of generally less than one day. The hydroxyl (OH) radical-initiated reactions and nitrate (NO3) radical-initiated reactions often lead to the formation of mutagenic nitro-PAH and other nitropolycyclic aromatic compounds, including nitrodibenzopyranones. These atmospheric reactions have a significant effect on ambient mutagenic activity, indicating that health risk assessments of combustion emissions should include atmospheric transformation products

    Advanced high temperature heat flux sensors

    Get PDF
    To fully characterize advanced high temperature heat flux sensors, calibration and testing is required at full engine temperature. This required the development of unique high temperature heat flux test facilities. These facilities were developed, are in place, and are being used for advanced heat flux sensor development

    Analysis of the Disorder-Induced Zero Bias Anomaly in the Anderson-Hubbard Model

    Full text link
    Using a combination of numerical and analytical calculations, we study the disorder-induced zero bias anomaly (ZBA) in the density of states of strongly-correlated systems modeled by the two dimensional Anderson-Hubbard model. We find that the ZBA comes from the response of the nonlocal inelastic self-energy to the disorder potential, a result which has implications for theoretical approaches that retain only the local self-energy. Using an approximate analytic form for the self-energy, we derive an expression for the density of states of the two-site Anderson-Hubbard model. Our formalism reproduces the essential features of the ZBA, namely that the width is proportional to the hopping amplitude tt and is independent of the interaction strength and disorder potential

    Turbine blade and vane heat flux sensor development, phase 2

    Get PDF
    The development of heat flux sensors for gas turbine blades and vanes and the demonstration of heat transfer measurement methods are reported. The performance of the heat flux sensors was evaluated in a cylinder in cross flow experiment and compared with two other heat flux measurement methods, the slug calorimeter and a dynamic method based on fluctuating gas and surface temperature. Two cylinders, each instrumented with an embedded thermocouple sensor, a Gardon gauge, and a slug calorimeter, were fabricated. Each sensor type was calibrated using a quartz lamp bank facility. The instrumented cylinders were then tested in an atmospheric pressure combustor rig at conditions up to gas stream temperatures of 1700K and velocities to Mach 0.74. The test data are compared to other measurements and analytical prediction

    Physical mechanism for a kinetic energy driven zero-bias anomaly in the Anderson-Hubbard model

    Full text link
    The combined effects of strong disorder, strong correlations and hopping in the Anderson-Hubbard model have been shown to produce a zero bias anomaly which has an energy scale proportional to the hopping and minimal dependence on interaction strength, disorder strength and doping. Disorder-induced suppression of the density of states for a purely local interaction is inconsistent with both the Efros-Shklovskii Coulomb gap and the Altshuler-Aronov anomaly, and moreover the energy scale of this anomaly is inconsistent with the standard energy scales of both weak and strong coupling pictures. We demonstrate that a density of states anomaly with similar features arises in an ensemble of two-site systems, and we argue that the energy scale t emerges in strongly correlated systems with disorder due to the mixing of lower and upper Hubbard orbitals on neighboring sites.Comment: 4 pages, 3 figures; new version includes minor changes to figures and text to increase clarit

    Recall of paired-associates as a function of overt and covert rehearsal procedures

    Get PDF
    Effect on memory of mode of studying paired associates, and mathematical model employing short term rehearsal buffer and long term memor

    Development of advanced high-temperature heat flux sensors

    Get PDF
    Various configurations of high temperature, heat flux sensors were studied to determine their suitability for use in experimental combustor liners of advanced aircraft gas turbine engines. It was determined that embedded thermocouple sensors, laminated sensors, and Gardon gauge sensors, were the most viable candidates. Sensors of all three types were fabricated, calibrated, and endurance tested. All three types of sensors met the fabricability survivability, and accuracy requirements established for their application

    The geometrically-averaged density of states as a measure of localization

    Full text link
    Motivated by current interest in disordered systems of interacting electrons, the effectiveness of the geometrically averaged density of states, ρg(ω)\rho_g(\omega), as an order parameter for the Anderson transition is examined. In the context of finite-size systems we examine complications which arise from finite energy resolution. Furthermore we demonstrate that even in infinite systems a decline in ρg(ω)\rho_g(\omega) with increasing disorder strength is not uniquely associated with localization.Comment: 8 pages, 8 figures; revised text and figure

    Temperature dependence of the zero-bias anomaly in the Anderson-Hubbard model: Insights from an ensemble of two-site systems

    Full text link
    Motivated by experiments on doped transition metal oxides, this paper considers the interplay of interactions, disorder, kinetic energy and temperature in a simple system. An ensemble of two-site Anderson-Hubbard model systems has already been shown to display a zero-bias anomaly which shares features with that found in the two-dimensional Anderson-Hubbard model. Here the temperature dependence of the density of states of this ensemble is examined. In the atomic limit, there is no zero-bias anomaly at zero temperature, but one develops at small nonzero temperatures. With hopping, small temperatures augment the zero-temperature kinetic-energy-driven zero-bias anomaly, while at larger temperatures the anomaly is filled in.Comment: 8 pages, 3 figures; submitted to SCES 2010 conference proceeding
    corecore