31,061 research outputs found
Quasi-circular Orbits for Spinning Binary Black Holes
Using an effective potential method we examine binary black holes where the
individual holes carry spin. We trace out sequences of quasi-circular orbits
and locate the innermost stable circular orbit as a function of spin. At large
separations, the sequences of quasi-circular orbits match well with
post-Newtonian expansions, although a clear signature of the simplifying
assumption of conformal flatness is seen. The position of the ISCO is found to
be strongly dependent on the magnitude of the spin on each black hole. At close
separations of the holes, the effective potential method breaks down. In all
cases where an ISCO could be determined, we found that an apparent horizon
encompassing both holes forms for separations well inside the ISCO.
Nevertheless, we argue that the formation of a common horizon is still
associated with the breakdown of the effective potential method.Comment: 13 pages, 10 figures, submitted to PR
An analysis of LANDSAT MSS scene-to-scene registration accuracy
Measurements were made for 12 registrations done by ERL for 8 registrations done by SRS. The results indicate that the ERL method is significantly more accurate in five of the eight comparison. The difference between the two methods are not significant in the other three cases. There are two possible reasons for the differences. First, the ERL model is a piecewise linear model and the EDITOR model is a cubic polynomial model. Second, the ERL program resamples using bilinear interpolation while the EDITOR software uses a nearest neighbor resampling. This study did not indicate how much of the difference is attributable to each factor. The average of all merged scene error values for ERL was 31.6 meters and the average for the eight common areas was 32.6 meters. The average of the eight merged scene error values for SRS was 40.1 meters
Quantifying fusion born ion populations in magnetically confined plasmas using ion cyclotron emission
Ion cyclotron emission (ICE) offers unique promise as a diagnostic of the
fusion born alpha-particle population in magnetically confined plasmas.
Pioneering observations from JET and TFTR found that ICE intensity
scales approximately linearly with the measured neutron flux from fusion
reactions, and with the inferred concentration, , of fusion-born
alpha-particles confined within the plasma. We present fully nonlinear
self-consistent kinetic simulations that reproduce this scaling for the first
time. This resolves a longstanding question in the physics of fusion
alpha-particle confinement and stability in MCF plasmas. It confirms the
magnetoacoustic cyclotron instability (MCI) as the likely emission mechanism
and greatly strengthens the basis for diagnostic exploitation of ICE in future
burning plasmas
Device measures conductivity and velocity of ionized gas streams
Coaxial arrangement of primary coil and two sensing secondary coils contained inside slender quartz tube inserted into ionized stream permits simultaneous determination of conductivity and linear velocity. System results agree favorably with theory
Evaluation of surface water resources from machine-processing of ERTS multispectral data
The surface water resources of a large metropolitan area, Marion County (Indianapolis), Indiana, are studied in order to assess the potential value of ERTS spectral analysis to water resources problems. The results of the research indicate that all surface water bodies over 0.5 ha were identified accurately from ERTS multispectral analysis. Five distinct classes of water were identified and correlated with parameters which included: degree of water siltiness; depth of water; presence of macro and micro biotic forms in the water; and presence of various chemical concentrations in the water. The machine processing of ERTS spectral data used alone or in conjunction with conventional sources of hydrological information can lead to the monitoring of area of surface water bodies; estimated volume of selected surface water bodies; differences in degree of silt and clay suspended in water and degree of water eutrophication related to chemical concentrations
Using rewards and penalties to obtain desired subject performance
Operant conditioning procedures, specifically the use of negative reinforcement, in achieving stable learning behavior is described. The critical tracking test (CTT) a method of detecting human operator impairment was tested. A pass level is set for each subject, based on that subject's asymptotic skill level while sober. It is critical that complete training take place before the individualized pass level is set in order that the impairment can be detected. The results provide a more general basis for the application of reward/penalty structures in manual control research
Excision boundary conditions for black hole initial data
We define and extensively test a set of boundary conditions that can be
applied at black hole excision surfaces when the Hamiltonian and momentum
constraints of general relativity are solved within the conformal thin-sandwich
formalism. These boundary conditions have been designed to result in black
holes that are in quasiequilibrium and are completely general in the sense that
they can be applied with any conformal three-geometry and slicing condition.
Furthermore, we show that they retain precisely the freedom to specify an
arbitrary spin on each black hole. Interestingly, we have been unable to find a
boundary condition on the lapse that can be derived from a quasiequilibrium
condition. Rather, we find evidence that the lapse boundary condition is part
of the initial temporal gauge choice. To test these boundary conditions, we
have extensively explored the case of a single black hole and the case of a
binary system of equal-mass black holes, including the computation of
quasi-circular orbits and the determination of the inner-most stable circular
orbit. Our tests show that the boundary conditions work well.Comment: 23 pages, 23 figures, revtex4, corrected typos, added reference,
minor content changes including additional post-Newtonian comparison. Version
accepted by PR
Post-Newtonian Freely Specifiable Initial Data for Binary Black Holes in Numerical Relativity
Construction of astrophysically realistic initial data remains a central
problem when modelling the merger and eventual coalescence of binary black
holes in numerical relativity. The objective of this paper is to provide
astrophysically realistic freely specifiable initial data for binary black hole
systems in numerical relativity, which are in agreement with post-Newtonian
results. Following the approach taken by Blanchet, we propose a particular
solution to the time-asymmetric constraint equations, which represent a system
of two moving black holes, in the form of the standard conformal decomposition
of the spatial metric and the extrinsic curvature. The solution for the spatial
metric is given in symmetric tracefree form, as well as in Dirac coordinates.
We show that the solution differs from the usual post-Newtonian metric up to
the 2PN order by a coordinate transformation. In addition, the solutions,
defined at every point of space, differ at second post-Newtonian order from the
exact, conformally flat, Bowen-York solution of the constraints.Comment: 41 pages, no figures, accepted for publication in Phys. Rev. D,
significant revision in presentation (including added references and
corrected typos
Black Hole Data via a Kerr-Schild Approach
We present a new approach for setting initial Cauchy data for multiple black
hole spacetimes. The method is based upon adopting an initially Kerr-Schild
form of the metric. In the case of non-spinning holes, the constraint equations
take a simple hierarchical form which is amenable to direct numerical
integration. The feasibility of this approach is demonstrated by solving
analytically the problem of initial data in a perturbed Schwarzschild geometry.Comment: 13 pages, RevTeX forma
Exponential complexity of an adiabatic algorithm for an NP-complete problem
We prove an analytical expression for the size of the gap between the ground
and the first excited state of quantum adiabatic algorithm for the
3-satisfiability, where the initial Hamiltonian is a projector on the subspace
complementary to the ground state. For large problem sizes the gap decreases
exponentially and as a consequence the required running time is also
exponential.Comment: 5 pages, 2 figures; v3. published versio
- …
