769 research outputs found
Sculpted-multilayer optical effects in two species of Papilio butterfly
Copyright © 2001 Optical Society of America. This paper was published in Applied Optics and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-7-1116. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.The wing-scale microstructures associated with two species of Papilio butterfly are described and characterized. Despite close similarities in their structures, they do not exhibit analogous optical effects. With Papilio palinurus, deep modulations in its multilayering create bicolor reflectivity with strong polarization effects, and this leads to additive color mixing in certain visual systems. In contrast to this, Papilio ulysses features shallow multilayer modulation that produces monocolor reflectivity without significant polarization effects
Patent Institutions: Shifting Interactions Between Legal Actors
This contribution to the Research Handbook on Economics of Intellectual Property Rights (Vol. 1 Theory) addresses interactions between the principal legal institutions of the U.S. patent system. It considers legal, strategic, and normative perspectives on these interactions as they have evolved over the last 35 years. Early centralization of power by the U.S. Court of Appeals for the Federal Circuit, newly created in 1982, established a regime dominated by the appellate court\u27s bright-line rules. More recently, aggressive Supreme Court and Congressional intervention have respectively reinvigorated patent law standards and led to significant devolution of power to inferior tribunals, including newly created tribunals like the USPTO\u27s Patent Trial and Appeals Board. This new era in institutional interaction creates a host of fresh empirical and normative research questions for scholars. The contribution concludes by outlining a research agenda
Section on Prospects for Dark Matter Detection of the White Paper on the Status and Future of Ground-Based TeV Gamma-Ray Astronomy
This is a report on the findings of the dark matter science working group for
the white paper on the status and future of TeV gamma-ray astronomy. The white
paper was commissioned by the American Physical Society, and the full white
paper can be found on astro-ph (arXiv:0810.0444). This detailed section
discusses the prospects for dark matter detection with future gamma-ray
experiments, and the complementarity of gamma-ray measurements with other
indirect, direct or accelerator-based searches. We conclude that any
comprehensive search for dark matter should include gamma-ray observations,
both to identify the dark matter particle (through the charac- teristics of the
gamma-ray spectrum) and to measure the distribution of dark matter in galactic
halos.Comment: Report from the Dark Matter Science Working group of the APS
commissioned White paper on ground-based TeV gamma ray astronomy (19 pages, 9
figures
TeV Particle Astrophysics II: Summary comments
A unifying theme of this conference was the use of different approaches to
understand astrophysical sources of energetic particles in the TeV range and
above. In this summary I review how gamma-ray astronomy, neutrino astronomy and
(to some extent) gravitational wave astronomy provide complementary avenues to
understanding the origin and role of high-energy particles in energetic
astrophysical sources.Comment: 6 pages, 4 figures; Conference summary talk for "TeV Particle
Astrophysics II" at University of Wisconsin, Madison, 28-31 August 200
Measurement of Cosmic-ray Electrons at TeV Energies by VERITAS
Cosmic-ray electrons and positrons (CREs) at GeV-TeV energies are a unique
probe of our local Galactic neighborhood. CREs lose energy rapidly via
synchrotron radiation and inverse-Compton scattering processes while
propagating within the Galaxy and these losses limit their propagation
distance. For electrons with TeV energies, the limit is on the order of a
kiloparsec. Within that distance there are only a few known astrophysical
objects capable of accelerating electrons to such high energies. It is also
possible that the CREs are the products of the annihilation or decay of heavy
dark matter (DM) particles. VERITAS, an array of imaging air Cherenkov
telescopes in southern Arizona, USA, is primarily utilized for gamma-ray
astronomy, but also simultaneously collects CREs during all observations. We
describe our methods of identifying CREs in VERITAS data and present an energy
spectrum, extending from 300 GeV to 5 TeV, obtained from approximately 300
hours of observations. A single power-law fit is ruled out in VERITAS data. We
find that the spectrum of CREs is consistent with a broken power law, with a
break energy at 710 40 140 GeV.Comment: 17 pages, 2 figures, accepted for publication in PR
Multiwavelength Observations of Markarian 421 in March 2001: an Unprecedented View on the X-ray/TeV Correlated Variability
(Abridged) We present a detailed analysis of week-long simultaneous
observations of the blazar Mrk421 at 2-60 keV X-rays (RXTE) and TeV gamma-rays
(Whipple and HEGRA) in 2001. The unprecedented quality of this dataset enables
us to establish firmly the existence of the correlation between the TeV and
X-ray luminosities, and to start unveiling some of its more detailed
characteristics, in particular its energy dependence, and time variability. The
source shows strong, highly correlated variations in X-ray and gamma-ray. No
evidence of X-ray/gamma-ray interband lag is found on the full week dataset (<3
ks). However, a detailed analysis of the March 19 flare reveals that data are
not consistent with the peak of the outburst in the 2-4 keV X-ray and TeV band
being simultaneous. We estimate a 2.1+/-0.7 ks TeV lag. The amplitudes of the
X-ray and gamma-ray variations are also highly correlated, and the TeV
luminosity increases more than linearly w.r.t. the X-ray one. The strong
correlation supports the standard model in which a unique electrons population
produces the X-rays by synchrotron radiation and the gamma-ray component by
inverse Compton scattering. However, for the individual best observed flares
the gamma-ray flux scales approximately quadratically w.r.t. the X-ray flux,
posing a serious challenge to emission models for TeV blazars. Rather special
conditions and/or fine tuning of the temporal evolution of the physical
parameters of the emission region are required in order to reproduce the
quadratic correlation.Comment: Correction to authorship. Minor editorial changes to text, figures,
references. 22 pages (emulateapj), 12 figures (47 postscript files) Published
in ApJ, 2008 April 20 (ADS: 2008ApJ...677..906F
Multiwavelength Observations of 1ES 1959+650, One Year After the Strong Outburst of 2002
In April-May 2003, the blazar 1ES 1959+650 showed an increased level of X-ray
activity. This prompted a multiwavelength observation campaign with the Whipple
10 m gamma-ray telescope, the Rossi X-ray Timing Explorer, the Bordeaux Optical
Observatory, and the University of Michigan Radio Astrophysical Observatory. We
present the multiwavelength data taken from May 2, 2003 to June 7, 2003 and
compare the source characteristics with those measured during observations
taken during the years 2000 and 2002. The X-ray observations gave a data set
with high signal-to-noise light curves and energy spectra; however, the
gamma-ray observations did not reveal a major TeV gamma-ray flare. Furthermore,
we find that the radio and optical fluxes do not show statistically significant
deviations from those measured during the 2002 flaring periods. While the X-ray
flux and X-ray photon index appear correlated during subsequent observations,
the apparent correlation evolved significantly between the years 2000, 2002,
and 2003. We discuss the implications of this finding for the mechanism that
causes the flaring activity.Comment: 17 pages, 6 figures, 2 table
Cosmic-Ray Proton and Helium Spectra from the First CREAM Flight
Cosmic-ray proton and helium spectra have been measured with the
balloon-borne Cosmic Ray Energetics And Mass experiment flown for 42 days in
Antarctica in the 2004-2005 austral summer season. High-energy cosmic-ray data
were collected at an average altitude of ~38.5 km with an average atmospheric
overburden of ~3.9 g cm. Individual elements are clearly separated with
a charge resolution of ~0.15 e (in charge units) and ~0.2 e for protons and
helium nuclei, respectively. The measured spectra at the top of the atmosphere
are represented by power laws with a spectral index of -2.66 0.02 for
protons from 2.5 TeV to 250 TeV and -2.58 0.02 for helium nuclei from 630
GeV/nucleon to 63 TeV/nucleon. They are harder than previous measurements at a
few tens of GeV/nucleon. The helium flux is higher than that expected from the
extrapolation of the power law fitted to the lower-energy data. The relative
abundance of protons to helium nuclei is 9.1 0.5 for the range from 2.5
TeV/nucleon to 63 TeV/nucleon. This ratio is considerably smaller than the
previous measurements at a few tens of GeV/nucleon.Comment: 20 pages, 4 figure
Discovery of very-high-energy emission from RGB J2243+203 and derivation of its redshift upper limit
Very-high-energy (VHE; 100 GeV) gamma-ray emission from the blazar RGB
J2243+203 was discovered with the VERITAS Cherenkov telescope array, during the
period between 21 and 24 December 2014. The VERITAS energy spectrum from this
source can be fit by a power law with a photon index of , and a
flux normalization at 0.15 TeV of . The integrated
\textit{Fermi}-LAT flux from 1 GeV to 100 GeV during the VERITAS detection is
, which is an order of
magnitude larger than the four-year-averaged flux in the same energy range
reported in the 3FGL catalog, (). The detection with VERITAS
triggered observations in the X-ray band with the \textit{Swift}-XRT. However,
due to scheduling constraints \textit{Swift}-XRT observations were performed 67
hours after the VERITAS detection, not simultaneous with the VERITAS
observations. The observed X-ray energy spectrum between 2 keV and 10 keV can
be fitted with a power-law with a spectral index of , and the
integrated photon flux in the same energy band is . EBL model-dependent upper limits
of the blazar redshift have been derived. Depending on the EBL model used, the
upper limit varies in the range from z to z
- …
