509 research outputs found

    Local contribution of a quantum condensate to the vacuum energy density

    Full text link
    We evaluate the local contribution g_[mu nu]L of coherent matter with lagrangian density L to the vacuum energy density. Focusing on the case of superconductors obeying the Ginzburg-Landau equation, we express the relativistic invariant density L in terms of low-energy quantities containing the pairs density. We discuss under which physical conditions the sign of the local contribution of the collective wave function to the vacuum energy density is positive or negative. Effects of this kind can play an important role in bringing about local changes in the amplitude of gravitational vacuum fluctuations - a phenomenon reminiscent of the Casimir effect in QED.Comment: LaTeX, 8 pages. Final journal versio

    On Electric Fields in Low Temperature Superconductors

    Get PDF
    The manifestly Lorentz covariant Landau-Ginzburg equations coupled to Maxwell's equations are considered as a possible framework for the effective description of the interactions between low temperature superconductors and magnetic as well as electric fields. A specific experimental set-up, involving a nanoscopic superconductor and only static applied fields whose geometry is crucial however, is described, which should allow to confirm or invalidate the covariant model through the determination of the temperature dependency of the critical magnetic-electric field phase diagram and the identification of some distinctive features it should display.Comment: 14 pages (Latex) + 2 postscript figure

    Bernoulli potential in type-I and weak type-II superconductors: III. Electrostatic potential above the vortex lattice

    Full text link
    The electrostatic potential above the Abrikosov vortex lattice, discussed earlier by Blatter {\em et al.} {[}PRL {\bf 77}, 566 (1996){]}, is evaluated within the Ginzburg-Landau theory. Unlike previous studies we include the surface dipole. Close to the critical temperature, the surface dipole reduces the electrostatic potential to values below a sensitivity of recent sensors. At low temperatures the surface dipole is less effective and the electrostatic potential remains observable as predicted earlier.Comment: 8 pages 5 figure

    Tunneling conductance of graphene ferromagnet-insulator-superconductor junctions

    Full text link
    We study the transport properties of a graphene ferromagnet-insulator superconductor (FIS) junction within the Blonder-Tinkham-Klapwijk formalism by solving spin-polarized Dirac-Bogoliubov-de-Gennes equation. We find that the retro and specular Andreev reflections in the graphene FIS junction are drastically modified in the presence of exchange interaction and that the spin-polarization (PTP_T) of tunneling current can be tuned from the positive to negative value by bias voltage (VV). In the thin-barrier limit, the conductance GG of a graphene FIS junction oscillates as a function of barrier strength χ\chi. Both the amplitude and phase of the conductance oscillation varies with the exchange energy EexE_{ex}. For Eex<EFE_{ex}<E_F (Fermi energy), the amplitude of oscillation decreases with EexE_{ex}. For Eexc>Eex>EFE_{ex}^{c}>E_{ex}>E_F, the amplitude of oscillation increases with EexE_{ex}, where Eexc=2EF+U0E_{ex}^{c}=2E_{F}+U_{0} (U0U_{0} is the applied electrostatic potential on the superconducting segment of the junction). For Eex>EexcE_{ex} > E_{ex}^{c}, the amplitude of oscillation decreases with EexE_{ex} again. Interestingly, a universal phase difference of π/2\pi/2 in χ\chi exists between the GχG-\chi curves for Eex>EFE_{ex}>E_F and Eex<EFE_{ex}<E_F. Finally, we find that the transitions between retro and specular Andreev reflections occur at eV=EFEexeV=|E_{F}-E_{ex}| and eV=Eex+EFeV=E_{ex}+E_{F}, and hence the singular behavior of the conductance near these bias voltages results from the difference in transport properties between specular and retro Andreev reflections.Comment: Accepted for publication in Physical Review

    A Note on Einstein Sasaki Metrics in D \ge 7

    Full text link
    In this paper, we obtain new non-singular Einstein-Sasaki spaces in dimensions D\ge 7. The local construction involves taking a circle bundle over a (D-1)-dimensional Einstein-Kahler metric that is itself constructed as a complex line bundle over a product of Einstein-Kahler spaces. In general the resulting Einstein-Sasaki spaces are singular, but if parameters in the local solutions satisfy appropriate rationality conditions, the metrics extend smoothly onto complete and non-singular compact manifolds.Comment: Latex, 13 page

    Eguchi-Hanson Solitons in Odd Dimensions

    Full text link
    We present a new class of solutions in odd dimensions to Einstein's equations containing either a positive or negative cosmological constant. These solutions resemble the even-dimensional Eguchi-Hanson-(A)dS metrics, with the added feature of having Lorentzian signatures. They are asymptotic to (A)dSd+1/Zp_{d+1}/Z_p. In the AdS case their energy is negative relative to that of pure AdS. We present perturbative evidence in 5 dimensions that such metrics are the states of lowest energy in their asymptotic class, and present a conjecture that this is generally true for all such metrics. In the dS case these solutions have a cosmological horizon. We show that their mass at future infinity is less than that of pure dS.Comment: 26 pages, Late

    CeCoIn5 - a quantum critical superfluid

    Full text link
    We have made the first complete measurements of the London penetration depth λ(T)\lambda(T) of CeCoIn5, a quantum-critical metal where superconductivity arises from a non-Fermi-liquid normal state. Using a novel tunnel diode oscillator designed to avoid spurious contributions to λ(T)\lambda(T), we have established the existence of intrinsic and anomalous power-law behaviour at low temperature. A systematic analysis raises the possibility that the unusual observations are due to an extension of quantum criticality into the superconducting state.Comment: 5 pages, 3 figure

    In search of dying radio sources in the local universe

    Full text link
    Up till now very few dying sources were known, presumably because the dying phase is short at centimeter wavelengths. We therefore have tried to improve the statistics on sources that have ceased to be active, or are intermittently active. The latter sources would partly consist of a fossil radio plasma left over from an earlier phase of activity, plus a recently restarted core and radio jets. Improving the statistics of dying sources will give us a better handle on the evolution of radio sources, in particular the frequency and time scales of radio activity. We have used the WENSS and NVSS surveys, in order to find sources with steep spectral indices, associated with nearby elliptical galaxies. In the cross correlation we presently used only unresolved sources, with flux densities at 1.4 GHz larger than 10 mJy. The eleven candidates thus obtained were observed with the VLA in various configurations, in order to confirm the steepness of the spectra, and to check whether active structures like flat-spectrum cores and jets are present, perhaps at low levels. We estimated the duration of the active and relic phases by modelling the integrated radio spectra using the standard models of spectral evolution. We have found six dying sources and three restarted sources, while the remaining two candidates remain unresolved also with the new VLA data and may be Compact Steep Spectrum sources, with an unusually steep spectrum. The typical age of the active phase, as derived by spectral fits, is in the range 10^7 - 10^8 years. For our sample of dying sources, the age of the relic phase is on average shorter by an order of magnitude than the active phase.Comment: 21 pages, 17 figures, accepted by A&A. For a version with high quality figures, see http://erg.ca.astro.it/preprints/dying2007

    a-b Plane Microwave Surface Impedance of a High-Quality Bi2Sr2CaCu2O8 Single Crystal

    Get PDF
    The a-b plane microwave surface impedance of a high-quality Bi2Sr2CaCu2O8 single crystal (Tc≈93 K) has been measured at 14.4, 24.6, and 34.7 GHz. The surface resistance at low temperature is the lowest yet reported, is comparable with the best YBa2Cu3O7-δ data, and has a characteristic ω2 frequency dependence. The change in penetration depth, Δλab(T), has a strong linear term at low temperature which is consistent with a gap with line nodes on the Fermi surface. The real part of the microwave conductivity displays a broad peak at low temperature, similar to that observed in YBa2Cu3O7-δ
    corecore